Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gibt es ein Anti-Universum?

10.11.2004


Experimentalphysiker der RWTH liefern wichtige Bauteile zur Erforschung der kosmischen Höhenstrahlung


Wie ist das Universum entstanden? Diese Frage beschäftigt die Menschheit bereits seit Jahrhunderten. Ein wenig Licht ins Dunkel könnten die Ergebnisse des AMS-Experiments bringen, an dem das I. Physikalische Institut der RWTH Aachen maßgeblich beteiligt ist. Bei AMS handelt es sich um eine komplexe Messeinheit, einen Detektor, der auf der internationalen Raumstation ISS drei Jahre lang die Eigenschaften der kosmischen Höhenstrahlung messen soll. Zur Raumstation wird AMS mit einem Space Shuttle gebracht. An dem AMS-Experiment sind weltweit fast 500 Wissenschaftler von 56 Forschungsinstituten aus 14 Nationen beteiligt. Das Projekt wird von dem Nobelpreisträger Prof. Dr. Samuel C.C. Ting vom Massachusetts Institutes of Technology (Boston, USA) geleitet, der am 22. November die Ehrendoktorwürde der RWTH verliehen bekommt. Die Forschungen in Deutschland werden vom Deutschen Zentrum für Luft- und Raumfahrt (DLR) gefördert.

Die Erde wird ständig von hochenergetischen geladenen und neutralen Teilchen aus dem Kosmos getroffen. Auch das sichtbare Licht, Röntgenstrahlung und so genannte g-Quanten gehören dazu. Ein großer Anteil dieser Strahlung ist ein Relikt des Urknalls, in dem unser Universum entstanden ist. Galten damals schon die Gesetze der Physik, wie wir sie heute kennen, müsste vor 14 Milliarden Jahren neben der Materie genauso viel Antimaterie entstanden sein. Allerdings wurde nie ein entsprechender Anteil im Universum nachgewiesen. Eine solche Beobachtung würde auf Galaxien aus Antimaterie hinweisen, aus denen nach Sternenexplosionen - so genannten Super-Novae - Teilchen mit hoher Energie bis zur Erde fliegen. Damit wäre eines der größten Rätsel der modernen Physik gelöst.


Ein weiteres, nicht weniger rätselhaftes Phänomen ist die Natur der dunklen Materie. Forscher wissen heute, dass nur etwa zehn Prozent der Materie im Universum so aufgebaut sind, wie die, aus der der Mensch oder die uns bekannte Materie geschaffen ist: aus Atomen mit einem Kern und Elektronen in der Hülle. Wie aber sind die restlichen 90 Prozent beschaffen? Die erwarteten Zerfallsprodukte der dunklen Materie in unserer Milchstraße kann man auf der Erde nicht nachweisen, da sie durch die Atmosphäre absorbiert werden. Dies sind nur zwei Beispiele für grundlegende Fragen, zu deren Lösung Experimente im Weltraum erforderlich sind. Das AMS-Experiment wird einige Antworten und wahrscheinlich auch einige Überraschungen parat halten, denn bisher hat noch kein Detektor oberhalb der Erdatmosphäre die kosmische Höhenstrahlung mit dieser Präzision vermessen.

AMS steht für Alpha Magnetic Spectrometer. Hierbei steht "Alpha" für die historische Bezeichnung der ISS. "Magnetic" deutet auf das Magnetfeld im Inneren des Detektors hin, das auf die geladenen Teilchen wirkt. Und "Spectrometer" besagt, dass verschiedene Eigenschaften der kosmischen Strahlung - etwa das Energiespektrum - gemessen werden.

Dieses spannende Forschungsprojekt wurde 1995 von Univ.-Prof. em. Dr. Klaus Lübelsmeyer initiiert und mit einem Probeflug an Board des Space Shuttles Discovery 1998 zum vorläufigen Höhepunkt gebracht. Seit 2000 sind die Aachener Forscher um Univ.-Prof. Dr. Stefan Schael vom Lehrstuhl für Experimentalphysik I b für einige der wichtigsten Messgeräte von AMS verantwortlich. Der TRD (Transition Radiation Detector) funktioniert ähnlich wie ein Geigerzähler. Er unterscheidet schwere und leichte Teilchen, die in das Messgerät gelangen. Das Herzstück von AMS ist der Silizium-Spurdetekor, der innerhalb eines supraleitenden Magneten betrieben wird. Hier wird das Teilchen aufgrund seiner Ladung durch ein Magnetfeld abgelenkt. Aus der Ablenkungsrichtung kann der Spurdetektor bestimmen, ob das Teilchen positiv oder negativ geladen ist. Er misst den Durchgang von Teilchen auf 0,01 mm genau. Die Position der Detektorscheiben aus Silizium wird durch ein neuartiges Lasersystem, das eigens an der RWTH entwickelt wurde, kontrolliert. Der dritte wichtige Baustein, für den die Aachener Experimentalphysiker zuständig sind, ist der ACC (Anti Coincidence Counter). Hier werden mögliche querfliegende Teilchen, die die Messung der senkrecht fliegenden Teilchen im Spurdetektor stören oder beeinflussen könnten, nachgewiesen.

Die großen technischen Herausforderungen, die in enger Zusammenarbeit mit der NASA bewältigt werden, um einen modernen Detektor zuverlässig über einen Zeitraum von drei Jahren im Weltraum zu betreiben, machen das AMS-Experiment zu einem idealen Projekt für eine Technische Hochschule. Die Aachener Forscher hoffen auf einen Start des Space Shuttles im Jahr 2008, um das AMS-Experiment zur Raumstation ISS zu bringen, damit möglichst bald viele wichtige Daten und Informationen per Satellit zur Erde gesendet werden können, die uns neue Einblicke in die Entstehung des Universums geben werden.

Weitere Informationen:
Univ.-Prof. Dr. Stefan Schael
I. Physikalisches Institut der RWTH Aachen
Tel.: 0241/8027159
Email: schael@physik.rwth-aachen.de

Thomas von Salzen | idw
Weitere Informationen:
http://www.physik.rwth-aachen.de/phys1b

Weitere Berichte zu: AMS AMS-Experiment Detektor Luft- und Raumfahrt RWTH Teilchen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie