Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gibt es ein Anti-Universum?

10.11.2004


Experimentalphysiker der RWTH liefern wichtige Bauteile zur Erforschung der kosmischen Höhenstrahlung


Wie ist das Universum entstanden? Diese Frage beschäftigt die Menschheit bereits seit Jahrhunderten. Ein wenig Licht ins Dunkel könnten die Ergebnisse des AMS-Experiments bringen, an dem das I. Physikalische Institut der RWTH Aachen maßgeblich beteiligt ist. Bei AMS handelt es sich um eine komplexe Messeinheit, einen Detektor, der auf der internationalen Raumstation ISS drei Jahre lang die Eigenschaften der kosmischen Höhenstrahlung messen soll. Zur Raumstation wird AMS mit einem Space Shuttle gebracht. An dem AMS-Experiment sind weltweit fast 500 Wissenschaftler von 56 Forschungsinstituten aus 14 Nationen beteiligt. Das Projekt wird von dem Nobelpreisträger Prof. Dr. Samuel C.C. Ting vom Massachusetts Institutes of Technology (Boston, USA) geleitet, der am 22. November die Ehrendoktorwürde der RWTH verliehen bekommt. Die Forschungen in Deutschland werden vom Deutschen Zentrum für Luft- und Raumfahrt (DLR) gefördert.

Die Erde wird ständig von hochenergetischen geladenen und neutralen Teilchen aus dem Kosmos getroffen. Auch das sichtbare Licht, Röntgenstrahlung und so genannte g-Quanten gehören dazu. Ein großer Anteil dieser Strahlung ist ein Relikt des Urknalls, in dem unser Universum entstanden ist. Galten damals schon die Gesetze der Physik, wie wir sie heute kennen, müsste vor 14 Milliarden Jahren neben der Materie genauso viel Antimaterie entstanden sein. Allerdings wurde nie ein entsprechender Anteil im Universum nachgewiesen. Eine solche Beobachtung würde auf Galaxien aus Antimaterie hinweisen, aus denen nach Sternenexplosionen - so genannten Super-Novae - Teilchen mit hoher Energie bis zur Erde fliegen. Damit wäre eines der größten Rätsel der modernen Physik gelöst.


Ein weiteres, nicht weniger rätselhaftes Phänomen ist die Natur der dunklen Materie. Forscher wissen heute, dass nur etwa zehn Prozent der Materie im Universum so aufgebaut sind, wie die, aus der der Mensch oder die uns bekannte Materie geschaffen ist: aus Atomen mit einem Kern und Elektronen in der Hülle. Wie aber sind die restlichen 90 Prozent beschaffen? Die erwarteten Zerfallsprodukte der dunklen Materie in unserer Milchstraße kann man auf der Erde nicht nachweisen, da sie durch die Atmosphäre absorbiert werden. Dies sind nur zwei Beispiele für grundlegende Fragen, zu deren Lösung Experimente im Weltraum erforderlich sind. Das AMS-Experiment wird einige Antworten und wahrscheinlich auch einige Überraschungen parat halten, denn bisher hat noch kein Detektor oberhalb der Erdatmosphäre die kosmische Höhenstrahlung mit dieser Präzision vermessen.

AMS steht für Alpha Magnetic Spectrometer. Hierbei steht "Alpha" für die historische Bezeichnung der ISS. "Magnetic" deutet auf das Magnetfeld im Inneren des Detektors hin, das auf die geladenen Teilchen wirkt. Und "Spectrometer" besagt, dass verschiedene Eigenschaften der kosmischen Strahlung - etwa das Energiespektrum - gemessen werden.

Dieses spannende Forschungsprojekt wurde 1995 von Univ.-Prof. em. Dr. Klaus Lübelsmeyer initiiert und mit einem Probeflug an Board des Space Shuttles Discovery 1998 zum vorläufigen Höhepunkt gebracht. Seit 2000 sind die Aachener Forscher um Univ.-Prof. Dr. Stefan Schael vom Lehrstuhl für Experimentalphysik I b für einige der wichtigsten Messgeräte von AMS verantwortlich. Der TRD (Transition Radiation Detector) funktioniert ähnlich wie ein Geigerzähler. Er unterscheidet schwere und leichte Teilchen, die in das Messgerät gelangen. Das Herzstück von AMS ist der Silizium-Spurdetekor, der innerhalb eines supraleitenden Magneten betrieben wird. Hier wird das Teilchen aufgrund seiner Ladung durch ein Magnetfeld abgelenkt. Aus der Ablenkungsrichtung kann der Spurdetektor bestimmen, ob das Teilchen positiv oder negativ geladen ist. Er misst den Durchgang von Teilchen auf 0,01 mm genau. Die Position der Detektorscheiben aus Silizium wird durch ein neuartiges Lasersystem, das eigens an der RWTH entwickelt wurde, kontrolliert. Der dritte wichtige Baustein, für den die Aachener Experimentalphysiker zuständig sind, ist der ACC (Anti Coincidence Counter). Hier werden mögliche querfliegende Teilchen, die die Messung der senkrecht fliegenden Teilchen im Spurdetektor stören oder beeinflussen könnten, nachgewiesen.

Die großen technischen Herausforderungen, die in enger Zusammenarbeit mit der NASA bewältigt werden, um einen modernen Detektor zuverlässig über einen Zeitraum von drei Jahren im Weltraum zu betreiben, machen das AMS-Experiment zu einem idealen Projekt für eine Technische Hochschule. Die Aachener Forscher hoffen auf einen Start des Space Shuttles im Jahr 2008, um das AMS-Experiment zur Raumstation ISS zu bringen, damit möglichst bald viele wichtige Daten und Informationen per Satellit zur Erde gesendet werden können, die uns neue Einblicke in die Entstehung des Universums geben werden.

Weitere Informationen:
Univ.-Prof. Dr. Stefan Schael
I. Physikalisches Institut der RWTH Aachen
Tel.: 0241/8027159
Email: schael@physik.rwth-aachen.de

Thomas von Salzen | idw
Weitere Informationen:
http://www.physik.rwth-aachen.de/phys1b

Weitere Berichte zu: AMS AMS-Experiment Detektor Luft- und Raumfahrt RWTH Teilchen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Countdown für Kilogramm, Kelvin und Co.
18.05.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt
18.05.2018 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

Tagung »Anlagenbau und -betrieb der Zukunft«

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Wie Immunzellen Bakterien mit Säure töten

18.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics