Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Woraus sich die von Jets ausgestoßene Materie zusammensetzt

27.09.2004


Vom Hubble Space Telescope (HST) aufgenommenes, optisches Bild des zentralen Kernbereichs und des Jets der Radiogalaxie M 87. Blasare sind Radiogalaxien mit kleinem Sichtwinkel zur Jetachse. Bild: NASA and The Hubble Heritage Team (STScI/AURA).


Astrophysikerin untersucht Hochenergiestrahlungsprozesse. Lise-Meitner Habilitationsstipendium an RUB-Forscherin

... mehr zu:
»Elektron »Photon »Strahlung »Teilchen

Jets sind im All eine der prominentesten Quellen energiereicher Gammastrahlung. Wie genau aber diese Strahlung zustande kommt, ist bisher nicht bekannt. Der Frage, woraus sich die vom Jet ausgestoßene Materie zusammensetzt und wie dabei die energiereiche Strahlung entsteht, geht Dr. Anita Reimer (Lehrstuhl für Theoretische Physik IV der Ruhr-Universität, Prof. Dr. Reinhard Schlickeiser) nach. Bei ihrem Forschungsvorhaben wird sie für die nächsten zwei Jahre mit dem Lise-Meitner-Stipendium des NRW-Wissenschaftsministeriums unterstützt. Fünf der dieses Jahr insgesamt 25 geförderten Wissenschaftlerinnen forschen an der RUB.

Prominenteste Quelle energiereicher Gammastrahlung


Jets von sog. Aktiven Galaktischen Kernen (AGN) machen sich bemerkbar durch gerichtete Strahlung aus Jet-Emissionsknoten von der Größe unseres Sonnensystems, die sich mit relativistischer Geschwindigkeit, d.h. fast so schnell wie das Licht, entlang der Jetachse bewegen. Extragalaktische Jets sind die prominentesten Quellen energiereicher Gammastrahlung oberhalb von etwa einem Mega-Elektronen-Volt: das millionenfache der Energie, welches ein Elektron beim Durchlaufen einer Ein-Volt Spannung gewinnt. Ist ein Jet nahezu direkt auf den Beobachter gerichtet, spricht man von einem "Blasar". Man nimmt an, dass diese Jets durch ein supermassives schwarzes Loch mit der Masse von hundert Millionen bis einer Billion Sonnenmassen im Innern des aktiven galaktischen Kerns angetrieben sind. "Das ausgestoßene Jetmaterial selbst muss größtenteils aus relativistischen Teilchen bestehen", so Dr. Reimer. "Um was genau es sich dabei handelt, versuchen Wissenschaftler seit der Entdeckung dieser Blasare im Gammastrahlungsbereich herauszufinden."

Beobachtungen von Blasaren geben nur Puzzlestücke preis

Anhand von rapiden Änderungen der Gammastrahlungs-Intensität innerhalb kürzester Zeit und den beobachteten Geschwindigkeiten der Emissionsknoten schätzen die Forscher die Größe des Emissionsgebietes und seine Geschwindigkeit ab. Messungen der Strahlungsintensität und der Photonenenergie (sog. Spektren) zeigen, dass die abgestrahlte Energieleistung in zwei Wellenlängenbereichen besonders ausgeprägt ist. Die Strahlung im niederenergetischen Wellenlängenbereich lässt sich einfach erklären: Polarisationsmessungen weisen auf eine Synchrotronstrahlung hin, d.h. in einem Magnetfeld spiralende Teilchen, die ihre Energie durch Strahlung verlieren. Die Existenz von Magnetfeldern in den Jet-Emissionsgebieten gilt daher als gesichert. Aussagekräftige Polarisationsmessungen im hochenergetischen Gammastrahlungsbereich sind mit den heutigen Instrumenten aber noch nicht möglich.

Relativistisches Paarplasma ...

Theoretiker haben zwei Möglichkeiten zur Erklärung der Hochenergiekomponente. Falls das Jetplasma größtenteils aus relativistischen Elektronen und Positronen besteht (ein sog. Paarplasma), so lässt sich die Gammastrahlung als sog. inverse Compton Strahlung erklären: Photonen mit niedriger Energie wechselwirken mit freien relativistischen, also hoch-energetischen, Elektronen, und nehmen dabei einen Großteil der Elektronenenergie auf: sie werden zu Gammaphotonen. Experten sprechen vom "leptonischen Blasar-Emissionsmodell".

... oder doch "gewöhnliches" Elektron-Proton-Plasma?

Das andere mögliche Szenario beschreiben "hadronische Blasar-Emissionsmodelle": Existieren hoch-relativistische Protonen im Jetplasma, deren Teilchenenergie weit über eine Million Giga-Elektronen-Volt hinausgeht, wechselwirken die Protonen mit den niederenergetischen Photonen und können so eine Vielzahl von instabilen Teilchen produzieren. Diese instabilen Teilchen zerfallen so lange, bis stabile Teilchen die Produktion beenden. Dies sind neben hochenergetischen Photonen auch Protonen, Neutronen, Elektronen, Positronen und Neutrinos. Sog. Paarkaskaden, die die Photonen und die Strahlung der geladenen, (noch) nicht zerfallenen Teilchen einleiten, überführen die Energie der Photonen vom Ultrahochenergiebereich (10^15 bis 10^20 Elektronen-Volt) in den für Gammastrahlungsinstrumente "sichtbaren" Bereich.

Beobachtungen sollen Theorien überprüfen helfen

Beide Emissionsmodelle können die bisherigen Beobachtungsbefunde erklären. "Es gilt also, geeignete Beobachtungsstrategien zu entwickeln, die auf unterschiedlichen, überprüfbaren Voraussagen beider Modelltypen basieren", erläutert Dr. Reimer. Dazu suchen die Forscher das gesamte elektromagnetische Spektrum nach Hinweisen wie z.B. bestimmte spektrale Variabilitätsmustern durch. In weltweit initiierten Multifrequenz-Kampagnen, welche simultane Messungen in einem möglichst weiten Frequenzbereich bereitstellen, sollen die entwickelten diagnostischen Methoden Anwendung finden, um letztendlich die Frage nach der Natur des Jetplasmas zu klären.

Frauen bei der Habilitation unterstützen

Dr. Anita Reimer widmet sich am Lehrstuhl für Theoretische Physik IV (Weltraum- und Astrophysik) in einer kleinen Forschergruppe Fragestellungen der Hochenergieemission kosmischer Objekte. Die Gruppe ist Mitglied des europäischen Luftschauer-Gammastrahlungsexperiments H.E.S.S. in Namibia. Mit dem Lise-Meitner-Stipendium fördert das NRW-Wissenschaftsministerium junge Wissenschaftlerinnen auf ihrem Weg in die Spitzenforschung. Die Frauen werden für jeweils zwei Jahre bei ihrer Habilitation unterstützt, mit der Wissenschaftler den Nachweis ihrer Lehrbefähigung erbringen und sich um eine Professur an Hochschulen bewerben können.

Weitere Informationen

Dr. Anita Reimer, Lehrstuhl für Theoretische Physik IV, Fakultät für Physik und Astronomie der Ruhr-Universität Bochum, 44780 Bochum, NB 7/69, Tel. 0234/32-27796, E-Mail: afm@tp4.ruhr-uni-bochum.de

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de

Weitere Berichte zu: Elektron Photon Strahlung Teilchen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Topologische Isolatoren: Neuer Phasenübergang entdeckt
17.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Vorhersagen bestätigt: Schwere Elemente bei Neutronensternverschmelzungen nachgewiesen
17.10.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mobilität 4.0: Konferenz an der Jacobs University

18.10.2017 | Veranstaltungen

Smart MES 2017: die Fertigung der Zukunft

18.10.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

18.10.2017 | Biowissenschaften Chemie

Biokunststoffe könnten auch in Traktoren die Richtung angeben

18.10.2017 | Messenachrichten

»ILIGHTS«-Studie gestartet: Licht soll Wohlbefinden von Schichtarbeitern verbessern

18.10.2017 | Energie und Elektrotechnik