Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Woraus sich die von Jets ausgestoßene Materie zusammensetzt

27.09.2004


Vom Hubble Space Telescope (HST) aufgenommenes, optisches Bild des zentralen Kernbereichs und des Jets der Radiogalaxie M 87. Blasare sind Radiogalaxien mit kleinem Sichtwinkel zur Jetachse. Bild: NASA and The Hubble Heritage Team (STScI/AURA).


Astrophysikerin untersucht Hochenergiestrahlungsprozesse. Lise-Meitner Habilitationsstipendium an RUB-Forscherin

... mehr zu:
»Elektron »Photon »Strahlung »Teilchen

Jets sind im All eine der prominentesten Quellen energiereicher Gammastrahlung. Wie genau aber diese Strahlung zustande kommt, ist bisher nicht bekannt. Der Frage, woraus sich die vom Jet ausgestoßene Materie zusammensetzt und wie dabei die energiereiche Strahlung entsteht, geht Dr. Anita Reimer (Lehrstuhl für Theoretische Physik IV der Ruhr-Universität, Prof. Dr. Reinhard Schlickeiser) nach. Bei ihrem Forschungsvorhaben wird sie für die nächsten zwei Jahre mit dem Lise-Meitner-Stipendium des NRW-Wissenschaftsministeriums unterstützt. Fünf der dieses Jahr insgesamt 25 geförderten Wissenschaftlerinnen forschen an der RUB.

Prominenteste Quelle energiereicher Gammastrahlung


Jets von sog. Aktiven Galaktischen Kernen (AGN) machen sich bemerkbar durch gerichtete Strahlung aus Jet-Emissionsknoten von der Größe unseres Sonnensystems, die sich mit relativistischer Geschwindigkeit, d.h. fast so schnell wie das Licht, entlang der Jetachse bewegen. Extragalaktische Jets sind die prominentesten Quellen energiereicher Gammastrahlung oberhalb von etwa einem Mega-Elektronen-Volt: das millionenfache der Energie, welches ein Elektron beim Durchlaufen einer Ein-Volt Spannung gewinnt. Ist ein Jet nahezu direkt auf den Beobachter gerichtet, spricht man von einem "Blasar". Man nimmt an, dass diese Jets durch ein supermassives schwarzes Loch mit der Masse von hundert Millionen bis einer Billion Sonnenmassen im Innern des aktiven galaktischen Kerns angetrieben sind. "Das ausgestoßene Jetmaterial selbst muss größtenteils aus relativistischen Teilchen bestehen", so Dr. Reimer. "Um was genau es sich dabei handelt, versuchen Wissenschaftler seit der Entdeckung dieser Blasare im Gammastrahlungsbereich herauszufinden."

Beobachtungen von Blasaren geben nur Puzzlestücke preis

Anhand von rapiden Änderungen der Gammastrahlungs-Intensität innerhalb kürzester Zeit und den beobachteten Geschwindigkeiten der Emissionsknoten schätzen die Forscher die Größe des Emissionsgebietes und seine Geschwindigkeit ab. Messungen der Strahlungsintensität und der Photonenenergie (sog. Spektren) zeigen, dass die abgestrahlte Energieleistung in zwei Wellenlängenbereichen besonders ausgeprägt ist. Die Strahlung im niederenergetischen Wellenlängenbereich lässt sich einfach erklären: Polarisationsmessungen weisen auf eine Synchrotronstrahlung hin, d.h. in einem Magnetfeld spiralende Teilchen, die ihre Energie durch Strahlung verlieren. Die Existenz von Magnetfeldern in den Jet-Emissionsgebieten gilt daher als gesichert. Aussagekräftige Polarisationsmessungen im hochenergetischen Gammastrahlungsbereich sind mit den heutigen Instrumenten aber noch nicht möglich.

Relativistisches Paarplasma ...

Theoretiker haben zwei Möglichkeiten zur Erklärung der Hochenergiekomponente. Falls das Jetplasma größtenteils aus relativistischen Elektronen und Positronen besteht (ein sog. Paarplasma), so lässt sich die Gammastrahlung als sog. inverse Compton Strahlung erklären: Photonen mit niedriger Energie wechselwirken mit freien relativistischen, also hoch-energetischen, Elektronen, und nehmen dabei einen Großteil der Elektronenenergie auf: sie werden zu Gammaphotonen. Experten sprechen vom "leptonischen Blasar-Emissionsmodell".

... oder doch "gewöhnliches" Elektron-Proton-Plasma?

Das andere mögliche Szenario beschreiben "hadronische Blasar-Emissionsmodelle": Existieren hoch-relativistische Protonen im Jetplasma, deren Teilchenenergie weit über eine Million Giga-Elektronen-Volt hinausgeht, wechselwirken die Protonen mit den niederenergetischen Photonen und können so eine Vielzahl von instabilen Teilchen produzieren. Diese instabilen Teilchen zerfallen so lange, bis stabile Teilchen die Produktion beenden. Dies sind neben hochenergetischen Photonen auch Protonen, Neutronen, Elektronen, Positronen und Neutrinos. Sog. Paarkaskaden, die die Photonen und die Strahlung der geladenen, (noch) nicht zerfallenen Teilchen einleiten, überführen die Energie der Photonen vom Ultrahochenergiebereich (10^15 bis 10^20 Elektronen-Volt) in den für Gammastrahlungsinstrumente "sichtbaren" Bereich.

Beobachtungen sollen Theorien überprüfen helfen

Beide Emissionsmodelle können die bisherigen Beobachtungsbefunde erklären. "Es gilt also, geeignete Beobachtungsstrategien zu entwickeln, die auf unterschiedlichen, überprüfbaren Voraussagen beider Modelltypen basieren", erläutert Dr. Reimer. Dazu suchen die Forscher das gesamte elektromagnetische Spektrum nach Hinweisen wie z.B. bestimmte spektrale Variabilitätsmustern durch. In weltweit initiierten Multifrequenz-Kampagnen, welche simultane Messungen in einem möglichst weiten Frequenzbereich bereitstellen, sollen die entwickelten diagnostischen Methoden Anwendung finden, um letztendlich die Frage nach der Natur des Jetplasmas zu klären.

Frauen bei der Habilitation unterstützen

Dr. Anita Reimer widmet sich am Lehrstuhl für Theoretische Physik IV (Weltraum- und Astrophysik) in einer kleinen Forschergruppe Fragestellungen der Hochenergieemission kosmischer Objekte. Die Gruppe ist Mitglied des europäischen Luftschauer-Gammastrahlungsexperiments H.E.S.S. in Namibia. Mit dem Lise-Meitner-Stipendium fördert das NRW-Wissenschaftsministerium junge Wissenschaftlerinnen auf ihrem Weg in die Spitzenforschung. Die Frauen werden für jeweils zwei Jahre bei ihrer Habilitation unterstützt, mit der Wissenschaftler den Nachweis ihrer Lehrbefähigung erbringen und sich um eine Professur an Hochschulen bewerben können.

Weitere Informationen

Dr. Anita Reimer, Lehrstuhl für Theoretische Physik IV, Fakultät für Physik und Astronomie der Ruhr-Universität Bochum, 44780 Bochum, NB 7/69, Tel. 0234/32-27796, E-Mail: afm@tp4.ruhr-uni-bochum.de

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de

Weitere Berichte zu: Elektron Photon Strahlung Teilchen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Flashmob der Moleküle
19.01.2017 | Technische Universität Wien

nachricht Verkehrsstau im Nichts
19.01.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

21.500 Euro für eine grüne Zukunft – Unserer Umwelt zuliebe

20.01.2017 | Unternehmensmeldung

innovations-report im Interview mit Rolf-Dieter Lafrenz, Gründer und Geschäftsführer der Hamburger Start ups Cargonexx

20.01.2017 | Unternehmensmeldung

Niederlande: Intelligente Lösungen für Bahn und Stahlindustrie werden gefördert

20.01.2017 | Förderungen Preise