Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Asteroidentrümmer auf schnellem Kollisionskurs

15.07.2004


Über eine Million mehrere Kilometer grosse Asteroiden kreisen zwischen den Planeten Mars und Jupiter um die Sonne. Dort kommt es zu gewaltigen Kollisionen. Bisher nahm man an, dass die hierbei entstehenden Asteroidentrümmer mehrere Millionen Jahre brauchen, bevor sie mit der Erde kollidieren. Neue Messungen am Edelgaslabor der ETH Zürich zeigen jedoch, dass sie die Erde bereits viel früher erreichen. Diese Erkenntnisse haben grosse Bedeutung für die Vorhersage zukünftiger Einschläge von Meteoriten auf der Erde.

... mehr zu:
»Dooley »ETH »Kollision »Meteorit

Bei Kollisionen im Weltall werden die beteiligten Asteroiden komplett zerstört und in unzählige Bruchstücke zersplittert. Computersimulationen sagen voraus, dass die meisten dieser Fragmente in die Sonne stürzen. Ein Teil aber trifft die Erde nach mehreren Millionen Jahren als Meteoriten. Allerdings kann dies auch schon viel früher passieren. An bestimmten Stellen im Asteroidengürtel ist die Umlaufszeit eines Objekts um die Sonne ein Vielfaches der Umlaufszeit des Riesenplaneten Jupiter. Diese so genannten Bahnresonanzen führen zu Bahnstörungen. Sie können die Bahn des Objekts so weit ändern, dass es die Erdbahn kreuzt und mit der Erde kollidiert. Wann dies passiert, ist allerdings bisher nur theoretisch berechnet worden. Neuartige Messungen eines Forscherteams des Instituts für Isotopengeologie der ETH Zürich konnten nun mehr Klarheit schaffen: Das Team stellt fest, dass es schon nach einigen hunderttausend Jahren zu einer Kollision mit unserem Planeten kommen kann.

Konzentration der Edelgase gibt Auskunft über "Reisezeit"


Kollisionsbruchstücke von Asteroiden sind im Weltraum ständig dem Beschuss von kosmischer Strahlung ausgesetzt. Dabei entstehen durch Kernreaktionen auch Edelgase. Diese Gase gehen keine chemischen Reaktionen ein. Deshalb werden sie während der gesamten Bestrahlungsdauer, also der Aufenthaltszeit der Fragmente im Weltraum, in den Trümmern angesammelt. Nach der Messung der Konzentration dieser so genannten kosmogenen Edelgase lässt sich die Reisezeit vom Mutterkörper zur Erde berechnen. Je höher die Konzentration, desto länger war der Meteorit unterwegs.

Fossile Meteoriten als Zeugen einer Katastrophe

Für die Untersuchungen konnten die Forscher Meteoriten verwenden, von denen man annimmt, dass sie Zeugen einer der grössten Asteroidenkollisionen in der späten Geschichte des Sonnensystems sind. Diese Meteoriten sind in einem Steinbruch in Südschweden in 480 Millionen Jahre alten Meeresablagerungen gefunden worden. Erstaunlich dabei ist, dass die Trümmer noch heute Spuren der vor 500 Millionen Jahren angesammelten Edelgase aufweisen.

"Tom Dooley" erlaubt Messung kleinster Gasmengen

Das Edelgaslabor der ETH Zürich ist mit einem hochempfindlichen Massenspektrometer, genannt "Tom Dooley", auf die Messung extrem kleiner Gasmengen spezialisiert. Dieses an der ETH entwickelte Instrument komprimiert das Probengas in ein winziges Volumen, um die Konzentration so zu erhöhen, dass selbst seltene Gase wie Helium und Neon in einzelnen Staubkörnern gemessen werden können. Die Empfindlichkeit von "Tom Dooley" ist mehr als hundertfach höher als bei konventionellen Massenspektrometern. Die Apparatur ist weltweit einzigartig. An diesem Gerät entwickelte der junge Forscher Philipp Reza Heck eine Methode, um kleinste Mengen kosmogener Edelgase zu messen. Hierbei werden die nur einige Mikrogramm leichten Meteoritenproben mit einem Infrarotlaser geschmolzen und die Gase dabei freigesetzt und gereinigt. Anschliessend konnte Heck die Isotope der Elemente Helium und Neon mit "Tom Dooley" messen.

Bestätigung der kurzen Reisezeit

Mit dieser neuen Methode konnten die Edelgase in den Meteoriten erstmals nachgewiesen werden, obwohl sie bereits während 480 Millionen Jahren auf der Erde sind. Die daraus errechneten Reisezeiten sind mit einigen hunderttausend Jahren äusserst gering und entsprechen der unteren Grenze, die von Simulationen vorausgesagt wurden. Es handelt sich hierbei um die ersten Trümmer, die nach einer grossen Kollision vor 480 Millionen Jahren auf die Erde gelangten. Die kurzen Bestrahlungsalter sind ein Hinweis dafür, dass sich die Kollision in der Nähe einer Bahnresonanz im Asteroidengürtel ereignete. Ausserdem lässt sich beweisen, dass die fossilen Meteoriten aus Südschweden alle von demselben Ereignis stammen. Die neu entwickelte Methode des Instituts für Isotopengeologie ermöglicht es, Theorien über das Verhalten von Trümmern im Weltall zu bestätigen. Dies erleichtert es den Forschenden wesentlich, zukünftige Kollisionen mit unserem Planeten vorherzusagen.

Anke Poiger | idw
Weitere Informationen:
http://lexikon.astronomie.info/meteorite
http://www.psrd.hawaii.edu/Mar04/fossilMeteorites.html

Weitere Berichte zu: Dooley ETH Kollision Meteorit

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Atomen beim Wettstreit um Bindungen zugeschaut
21.06.2017 | Universität Innsbruck

nachricht Die Schweiz in Pole-Position in der neuen ESA-Mission
21.06.2017 | Universität Bern

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

Die Zukunft der Informationstechnologie - Internationale Konferenz erstmals in Aachen

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

22.06.2017 | Geowissenschaften

Wie Protonen durch eine Brennstoffzelle wandern

22.06.2017 | Energie und Elektrotechnik

Tröpfchen für Tröpfchen

22.06.2017 | Biowissenschaften Chemie