Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Asteroidentrümmer auf schnellem Kollisionskurs

15.07.2004


Über eine Million mehrere Kilometer grosse Asteroiden kreisen zwischen den Planeten Mars und Jupiter um die Sonne. Dort kommt es zu gewaltigen Kollisionen. Bisher nahm man an, dass die hierbei entstehenden Asteroidentrümmer mehrere Millionen Jahre brauchen, bevor sie mit der Erde kollidieren. Neue Messungen am Edelgaslabor der ETH Zürich zeigen jedoch, dass sie die Erde bereits viel früher erreichen. Diese Erkenntnisse haben grosse Bedeutung für die Vorhersage zukünftiger Einschläge von Meteoriten auf der Erde.

... mehr zu:
»Dooley »ETH »Kollision »Meteorit

Bei Kollisionen im Weltall werden die beteiligten Asteroiden komplett zerstört und in unzählige Bruchstücke zersplittert. Computersimulationen sagen voraus, dass die meisten dieser Fragmente in die Sonne stürzen. Ein Teil aber trifft die Erde nach mehreren Millionen Jahren als Meteoriten. Allerdings kann dies auch schon viel früher passieren. An bestimmten Stellen im Asteroidengürtel ist die Umlaufszeit eines Objekts um die Sonne ein Vielfaches der Umlaufszeit des Riesenplaneten Jupiter. Diese so genannten Bahnresonanzen führen zu Bahnstörungen. Sie können die Bahn des Objekts so weit ändern, dass es die Erdbahn kreuzt und mit der Erde kollidiert. Wann dies passiert, ist allerdings bisher nur theoretisch berechnet worden. Neuartige Messungen eines Forscherteams des Instituts für Isotopengeologie der ETH Zürich konnten nun mehr Klarheit schaffen: Das Team stellt fest, dass es schon nach einigen hunderttausend Jahren zu einer Kollision mit unserem Planeten kommen kann.

Konzentration der Edelgase gibt Auskunft über "Reisezeit"


Kollisionsbruchstücke von Asteroiden sind im Weltraum ständig dem Beschuss von kosmischer Strahlung ausgesetzt. Dabei entstehen durch Kernreaktionen auch Edelgase. Diese Gase gehen keine chemischen Reaktionen ein. Deshalb werden sie während der gesamten Bestrahlungsdauer, also der Aufenthaltszeit der Fragmente im Weltraum, in den Trümmern angesammelt. Nach der Messung der Konzentration dieser so genannten kosmogenen Edelgase lässt sich die Reisezeit vom Mutterkörper zur Erde berechnen. Je höher die Konzentration, desto länger war der Meteorit unterwegs.

Fossile Meteoriten als Zeugen einer Katastrophe

Für die Untersuchungen konnten die Forscher Meteoriten verwenden, von denen man annimmt, dass sie Zeugen einer der grössten Asteroidenkollisionen in der späten Geschichte des Sonnensystems sind. Diese Meteoriten sind in einem Steinbruch in Südschweden in 480 Millionen Jahre alten Meeresablagerungen gefunden worden. Erstaunlich dabei ist, dass die Trümmer noch heute Spuren der vor 500 Millionen Jahren angesammelten Edelgase aufweisen.

"Tom Dooley" erlaubt Messung kleinster Gasmengen

Das Edelgaslabor der ETH Zürich ist mit einem hochempfindlichen Massenspektrometer, genannt "Tom Dooley", auf die Messung extrem kleiner Gasmengen spezialisiert. Dieses an der ETH entwickelte Instrument komprimiert das Probengas in ein winziges Volumen, um die Konzentration so zu erhöhen, dass selbst seltene Gase wie Helium und Neon in einzelnen Staubkörnern gemessen werden können. Die Empfindlichkeit von "Tom Dooley" ist mehr als hundertfach höher als bei konventionellen Massenspektrometern. Die Apparatur ist weltweit einzigartig. An diesem Gerät entwickelte der junge Forscher Philipp Reza Heck eine Methode, um kleinste Mengen kosmogener Edelgase zu messen. Hierbei werden die nur einige Mikrogramm leichten Meteoritenproben mit einem Infrarotlaser geschmolzen und die Gase dabei freigesetzt und gereinigt. Anschliessend konnte Heck die Isotope der Elemente Helium und Neon mit "Tom Dooley" messen.

Bestätigung der kurzen Reisezeit

Mit dieser neuen Methode konnten die Edelgase in den Meteoriten erstmals nachgewiesen werden, obwohl sie bereits während 480 Millionen Jahren auf der Erde sind. Die daraus errechneten Reisezeiten sind mit einigen hunderttausend Jahren äusserst gering und entsprechen der unteren Grenze, die von Simulationen vorausgesagt wurden. Es handelt sich hierbei um die ersten Trümmer, die nach einer grossen Kollision vor 480 Millionen Jahren auf die Erde gelangten. Die kurzen Bestrahlungsalter sind ein Hinweis dafür, dass sich die Kollision in der Nähe einer Bahnresonanz im Asteroidengürtel ereignete. Ausserdem lässt sich beweisen, dass die fossilen Meteoriten aus Südschweden alle von demselben Ereignis stammen. Die neu entwickelte Methode des Instituts für Isotopengeologie ermöglicht es, Theorien über das Verhalten von Trümmern im Weltall zu bestätigen. Dies erleichtert es den Forschenden wesentlich, zukünftige Kollisionen mit unserem Planeten vorherzusagen.

Anke Poiger | idw
Weitere Informationen:
http://lexikon.astronomie.info/meteorite
http://www.psrd.hawaii.edu/Mar04/fossilMeteorites.html

Weitere Berichte zu: Dooley ETH Kollision Meteorit

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise