Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schwarze Löcher geringer Masse wachsen auch heute noch

13.07.2004


Die Bulge Masse ist stark mit der Masse des schwarzen Loches korreliert


Akkretion von Materie um ein schwarzes Loch


Für die Mehrheit der Astronomen ist die Existenz von schwarzen Löchern mit einer Million oder mehr Sonnenmassen im Zentrum der meisten Galaxien inzwischen unumstritten. Supermassive schwarze Löcher sind heute Teil des astronomischen Allgemeinwissens.

... mehr zu:
»Downsizing »Galaxie »Materie »Universum

Detaillierte Untersuchungen der Bewegung von Sternen im Zentrum unserer Milchstraße haben ergeben, daß unsere eigene Galaxis so gut wie sicher ein schwarzes Loch mit einer Masse von drei Millionen mal jener der Sonne enthält. Astronomen haben auch schwarze Löcher in ein paar Dutzend nahegelegenen Galaxien nachgewiesen und haben entdeckt, daß die Masse eines schwarzen Loches stark mit der Masse des umgebenden galaktischen Sphäroids, der zentralen Ausbauchung (engl.: bulge), korreliert ist (Abb. 1). Die Masse dieses Bulges ist immer ungefähr 1000 mal die Masse des schwarzen Loches. Außerdem scheinen Galaxien ohne einen solchen Bulge auch kein schwarzes Loch zu enthalten. Diese Entdeckung ist deswegen so aufregend, weil sie darauf hinweist, daß galaktische Sphäroide und schwarze Löcher sich also zusammen bilden müssen. Die Frage, die sich hiermit stellt, ist daher, wie und wann ging die Bildung dieser Objekte von statten? Ist es möglich, einen direkten Nachweis zu finden, daß sich Bulges und schwarze Löcher in manchen Galaxien nach wie vor bilden, oder hat dieser Vorgang schon vor langer Zeit aufgehört?

Wissenschaftler am Max-Planck-Institut für Astrophysik (MPA) und an der Johns Hopkins University (JHU) in den Vereinigten Staaten haben versucht, eine Antwort auf diese Fragen zu finden, indem sie eine umfangreiche Auswahl an Galaxien mit aktiven Kernen untersucht haben, die sie dem Sloan Digital Sky Survey entnahmen. In solchen Galaxien wird durch das Einfallen von Material auf das zentrale schwarze Loch (Abb. 3) ionisierende Strahlung erzeugt, die zu charakteristischen Signaturen im Emissionslinienspektrum der Galaxie führt. Das MPA/JHU Team hat eine detaillierte Statistik über 22.000 solche Systeme im lokalen Universum erstellt, um die gegenwärtige Massenzuwachsrate von schwarzen Löchern zu eruieren. Die Ergebnisse weisen darauf hin, daß im Mittel schwarze Löcher "niedriger" Masse von weniger als 100 Millionen Sonnenmassen, noch immer ein signifikantes Wachstum aufweisen. Weiters hat das Team die Rate gemessen, mit der sich in nahegelegenen Bulges geringer Masse Sterne bilden, und ist zu dem Schluß gekommen, daß diese Rate tausendmal höher ist, als die Rate mit der schwarze Löcher wachsen. Dieser Faktor tausend stimmt erfreulicherweise sehr gut überein mit dem Massenverhältnis zwischen Bulge und schwarzem Loch, welches in inaktiven Galaxien beobachtet wird! Dem gegenüber wachsen die größten schwarzen Löcher im lokalen Universum, die Massen bis zu 10 Milliarden Sonnenmassen haben können und in gigantischen elliptischen Galaxien zu finden sind, kaum, was darauf hinweist, daß sie sich in einer sehr viel früheren kosmischen Epoche gebildet haben müssen.


Die Ergebnisse des MPA/JHU Teams unterstützen die These des "Cosmic Downsizing", also der Evolution des Kosmos in Richtung kleinerer Skalen. Cosmic Downsizing beschreibt ein Szenario, in dem aktive Sternbildung und das Wachsen schwarzer Löcher sich im Laufe der Entwicklung des Universums zu Galaxien immer kleinerer Masse hin verschiebt. Dieser Umstand wird von den Theoretikern mehr oder weniger als Paradoxon angesehen, versuchen sie doch zu verstehen, wie sich umgekehrt Galaxien aus kleinen Dichtefluktuationen entwickelt haben, die in den frühesten Augenblicken nach dem Urknall erzeugt worden sind. Gemäß der derzeitigen Standardtheorie wird die dominierende Materiekomponente im Universum nicht von den Baryonen gebildet, aus der sich alle gewöhnliche Materie - Menschen ebenso wie Sterne - zusammensetzt, stattdessen macht den größten Teil der Masse im Universum eine bisher nicht direkt beobachtete, dunkle Materie aus, die sich nur durch ihre Gravitation bemerkbar macht. Dunkle Materie wird allerdings vom Cosmic Downsizing nicht beeinflußt, ihre Zusammenballung beginnt auf kleinen Skalen und setzt sich zu immer massereicheren Strukturen hin fort. Zu verstehen, warum sich das Verhalten von Galaxien und Dunkler Materie so sehr voneinander unterscheiden soll, stellt gegenwärtig eine der bedeutendsten Herausforderungen für Kosmologen dar.

Guinevere Kauffmann | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpa-garching.mpg.de/SDSS

Weitere Berichte zu: Downsizing Galaxie Materie Universum

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten