Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein "Drachenkopf" auf der Oberfläche von Titan

16.04.2004


Internationalem Astronomen-Team gelingen mit adaptiver Optik tiefgründige Durchblicke auf die Oberfläche des Saturnmonds Titan


Der Saturnmond Titan wurde in mehreren Wellenlängen zeitgleich beobachtet. Das linke Bild zeigt einen klaren Blick auf die Oberfläche. Bei etwas größeren Wellenlängen (rechts) wird die dichte Wolkenschicht aus Methan und anderen Kohlenwasserstoffen undurchdringlich und verbirgt so den Blick auf die Oberfläche.
Bild: Max-Planck-Institut für Astronomie/ESO


Abb. oben: Die unterschiedlichen Ansichten Titans wurden innerhalb einer Woche aufgenommen. Die einzelnen Farbbilder setzten sich aus Aufnahmen in jeweils drei Kanälen mit dem "Spectral Differential Imager" zusammen. Deutlich zu erkennen ist der von Tag zu Tag leicht veränderte Blickwinkel auf die hellen und dunklen Bodenformationen Titans.

Abb. unten: Diese Landkarte zeigt etwa Dreiviertel der Oberfläche Titans. Neben dem hellen Gebiet auf der südlichen Hemisphäre fallen besonders die dunkleren Regionen in Äquatornähe auf. Die drei auffälligsten dunklen Strukturen wurden von den Wissenschaftlern (von links nach rechts) auf die vorläufigen Namen "liegendes H", einem Ball nachjagender "Hund" und "Drachenkopf" getauft.

Bild: Max-Planck-Institut für Astronomie/ESO



Neue Aufnahmen der Oberfläche des Saturnmondes Titan von bisher unerreichter Klarheit und Schärfe sind einer internationalen Gruppe von Wissenschaftlern unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg gelungen. Die Messungen wurden mit einem neuartigen Beobachtungsinstrument am Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) in Chile durchgeführt. Auf Titan, dem zweitgrößten Mond im Sonnensystem, wird Anfang 2005 die europäischen Raumsonde "Huygens" landen. Zur Vorbereitung dieser Mission wird der Saturn-Mond zur Zeit weltweit kontinuierlich beobachtet. Neue Oberflächenkarten sollen die Festlegung des Landeanflugs und des Landeplatzes von "Huygens" erleichtern.

... mehr zu:
»ESO »Methan »Sonnensystem »Titan


Titan ist der größte Mond des Ringplaneten Saturn und, fast gleichauf mit dem Jupitermond Ganymed, der zweitgrößte Mond im Sonnensystem. Als einziger Mond weist er eine dichte Atmosphäre auf, deren Druck in den untersten Schichten etwa anderthalb mal so groß ist wie der Luftdruck auf der Erde. Ähnlich der Erdatmosphäre besteht Titans Atmosphäre größtenteils aus Stickstoff. Ihr zweithäufigster Bestandteil ist allerdings nicht Sauerstoff sondern das bei uns als Treibhausgas bekannte Methan. Dichte Wolken aus Methan und anderen Kohlenwasserstoffen hüllen Titan ein und verhindern bisher in fast allen Wellenlängenbereichen einen direkten Blick auf seine Oberfläche.

Bisherige Untersuchungen der Wolken lassen auf einen auf Methan aufbauenden Wetterkreislauf ähnlich der irdischen Wasserzirkulation schließen. Kürzlich von Wissenschaftlern in den USA durchgeführte Radarmessungen deuten ferner darauf hin, dass ein Teil der etwa -175 Grad Celsius kühlen Titanoberfläche von einem Ozean aus verflüssigten Kohlenwasserstoffen bedeckt ist. Mit seiner dichten Atmosphäre, dem Wetterkreislauf und möglichen Ozeanen an seiner Oberfläche ist Titan somit neben der Erde im Sonnensystem einzigartig.

Im Februar 2004 wurde Titan in sechs Nächten mit dem im Infraroten arbeitenden Instrument NACO am Very Large Telescope (VLT) der Europäischen Südsternwarte ESO beobachtet. NACO (Kurzform für NAOS-CONICA) ist eine Kombination aus einem in Frankreich gebauten Instrument zur adaptiven Optik (NAOS) und der unter Führung des Max-Planck-Institut für Astronomie in Heidelberg gebauten Infrarotkamera CONICA. Dabei wurde ein neuartiges Zusatzgerät eingesetzt, das speziell zur Untersuchung von Objekten mit Methanatmosphäre entwickelt wurde. Mit diesem Gerät, dem so genannten "Spectral Differential Imager" (SDI), entwickelt und gebaut von Rainer Lenzen (Max-Planck-Institut für Astronomie) und Laird Close (Steward Observatory), werden Bilder in mehreren benachbarten Wellenlängen gleichzeitig aufgenommen. Während man in einer Wellenlänge nur das Licht registriert, das von den Wolken in der Hochatmosphäre gestreut wird ("Wolkenbilder"), kann man in benachbarten Wellenlängen deutlich und klar Strukturen auf der Oberfläche sehen, da die Methanwolken hier transparent sind (Bild 1).

Die "Wolkenbilder" werden dazu benötigt, aus den "Oberflächenbildern" die Effekte der Lichtstreuung in der Atmosphäre Titans herauszurechnen. Die unter der Leitung von Markus Hartung (ESO) und Tom Herbst (Max-Planck-Institut) durchgeführten Beobachtungen erstreckten sich über einen Zeitraum von einer Woche und überdecken 75 Prozent der Oberfläche Titans (Bild 2). Die resultierende Oberflächenkarte zeigt helle und dunkle Strukturen auf Titan. Teile der Oberfläche reflektieren viel Sonnenlicht, während andere Teile das meiste Licht absorbieren. Bei den hellen Strukturen mit hohem Reflexionsvermögen könnte es sich um die von Eis bedeckten "Kontinente" oder Hochebenen Titans handeln. Die dunklen Strukturen mit niedriger Albedo lassen sich als Ozeane deuten. Auffällig sind die helle Region in Titans südlicher Hemisphäre und die Abfolge dunkler Regionen in der Äquatorregion.

Zur besseren Orientierung haben die Wissenschaftler den dunklen Regionen vorläufige Namen gegeben. Endgültige, offizielle Namen werden erst zu einem späteren Zeitpunkt von der Arbeitsgruppe zur Benennung der Objekte im Sonnensystem der Internationalen Astronomischen Union (IAU) vergeben. Von links nach rechts sind in der Abb. 3 zu sehen: das "liegende H", der einem Ball nachjagende "Hund" und der "Drachenkopf".

Die Wissenschaftler werden die Beobachtung von Titan in den kommenden Monaten fortsetzen, um eine vollständige Karte der Oberfläche Titans zu erstellen und damit das Projekt "Huygens" der Europäischen Weltraumbehörde ESA zu unterstützen. Detailliertere Oberflächenkarten werden sowohl bei der Planung des Landeanfluges von Huygens als auch bei der Interpretation der Messergebnisse der gemeinsam von NASA und ESA durchgeführten Cassini-Huygens-Mission zum Titan hilfreich sein.

An dem Projekt beteiligt sind Markus Hartung, Chris Lidman, Olivier Marco (ESO), Tom Herbst, Rainer Lenzen, Wolfgang Brandner (Max-Planck-Institut für Astronomie), Laird Close, Beth Biller, Eric Nielsen (Steward Observatory, USA).

Weitere Informationen erhalten Sie von:

Dr. Tom Herbst
Max-Planck-Institut für Astronomie, Heidelberg
Tel.: 06221 528-223, Fax: -246
E-Mail: herbst@mpia.de

Dr. Wolfgang Brandner
Max-Planck-Institut für Astronomie, Heidelberg
Tel.: 06221 528-289
E-Mail: brandner@mpia.de

Dr. Jakob Staude
Max-Planck-Institut für Astronomie, Heidelberg
Tel.: 06221 528-229
E-Mail: staude@mpia.de

Dr. Tom Herbst | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpia.de/Public/Aktuelles/PR/2001/PR011203/PR_011203_de.html
http://www.eso.org/outreach/press-rel/pr-2004/pr-09-04.html

Weitere Berichte zu: ESO Methan Sonnensystem Titan

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie