Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Berliner Magnetfelder erzeugen ungewöhnlichen Materiezustand

27.05.2003


In einem Experiment am Hahn-Meitner-Institut in Berlin wurden zum ersten Mal die magnetischen Eigenschaften eines Kristalls für die Erzeugung eines Bose-Einstein-Kondensats genutzt.



Dieser ungewöhnliche Materiezustand entstand, als der Kristall in ein starkes Magnetfeld von 14 Tesla gebracht wurde und konnte mit Hilfe von Neutronen aus dem Forschungsreaktor des Hahn-Meitner-Instituts nachgewiesen werden. Mit Magnetfeldern von bis zu 17 Tesla (mehr als das 200.000-fache des Erdmagnetfelds) bei Experimenten mit Neutronen stehen in Berlin weltweit einzigartige Forschungsmöglichkeiten zur Verfügung, die Voraussetzung für Erzeugung und Nachweis des Kondensats waren.



Das Bose-Einstein-Kondensat

Nach den Gesetzen der Quantenphysik können Teilchen, die sich in einem begrenzten Raum aufhalten, nicht eine beliebige Energie haben, sondern müssen einen der möglichen Energiezustände einnehmen. In einem Atom etwa sind die Elektronen, die den Kern umkreisen, auf bestimmte Niveaus verteilt, wobei jedes Niveau nur von einem Elektron besetzt wird. Dies ist eine besondere Eigenschaft von Fermionen, Teilchen, die - wie das Elektron - nie zu mehreren denselben Zustand besetzen können. Anders ist das bei den Bosonen. Diese halten sich gerne zu mehreren in einem Zustand auf, werden aber in der Regel durch ihre Wärmebewegung daran gehindert, sich alle im Grundzustand - dem Zustand niedrigster Energie - zu versammeln.

Die Eigenschaften der Bosonen und die daraus folgende Möglichkeit, dass sich bei sehr tiefen Temperaturen alle Teilchen eines Systems in ein und demselben Zustand befinden, sagten in den 20-er Jahren des 20. Jahrhunderts der indische Physiker Satyendra Nath Bose und der vor allem als Begründer der Relativitätstheorie bekannte Albert Einstein voraus. Alle Teilchen, die an diesem Zustand teilhaben, haben exakt die gleichen Eigenschaften und verhalten sich auch identisch, was zu außergewöhnlichen physikalischen Phänomenen führen kann: sehr kaltes Helium wird superfluid, das heißt es fließt ohne innere Reibung, einige Substanzen werden bei niedrigen Temperaturen supraleitend, leiten also Strom ohne Widerstand. Hier bilden je zwei Elektronen ein so genanntes Cooper-Paar, das sich als Boson verhält. Besonders viel Aufsehen haben vor wenigen Jahren Bose-Einstein-Kondensate aus extrem kalten Natrium- oder Kaliumgasen erregt, in denen die Entstehung des Kondensats unmittelbar sichtbar gemacht werden konnte.

Das Kondensat im Kristall

Bei den Kristallen, in denen das Kondensat entdeckt worden ist, handelt es sich um die ungewöhnliche chemische Verbindung TlCuCl3 (Thallium-Kupfer-Trichlorid). Die Kupferatome wirken durch Ihren Spin (Eigenrotation) wie kleine Elementarmagnete. Normalerweise finden sich in diesen Kristallen jeweils zwei solche Atome mit entgegengesetzten Rotationsrichtungen zusammen, so dass deren Felder sich kompensieren. Erst wenn man von außen ein sehr hohes Magnetfeld anlegt, kann man die Spins zwingen, sich parallel zu stellen, das heißt es entsteht ein neuer Zustand niedrigster Energie, in dem die Spins parallel sein können. In diesem Grundzustand sammeln sich dann die Paare von Kupferatomen und bilden das Bose-Einstein-Kondensat. Während die weiter oben beschriebenen Kondensate durch Abkühlung erzeugt wurden, hielt man bei der Erzeugung des neuen Kondensats im Kristall die Temperatur auf 1,5 Kelvin beziehungsweise 50 Millikelvin konstant und erhöhte das Magnetfeld. Dabei veränderten sich bei einem Magnetfeld von rund sechs Tesla die Eigenschaften der Probe grundsätzlich, die nun ein Verhalten zeigte, das den theoretischen Voraussagen für ein Bose-Einstein-Kondensat entsprach.

Untersuchung mit Neutronen - Magnetfelder am Hahn-Meitner-Institut machen das Kondensat erst möglich

Die Eigenschaften der Probe wurden mit Hilfe der inelastischen Neutronenstreuung bestimmt. Neutronen sind für diese Untersuchungen besonders geeignet: Sie haben keine elektrische Ladung, aber ein magnetisches Moment, können also tief in die Probe eindringen und Informationen über deren magnetische Eigenschaften mitbringen. In den entscheidenden Experimenten wurden Neutronen aus dem Forschungsreaktor des Berliner Hahn-Meitner-Instituts genutzt. Nur hier konnte während der Untersuchung mit Neutronen ein Magnetfeld von 14 Tesla angelegt werden, das weit über dem Mindestwert von sechs Tesla lag und so nicht nur die Erzeugung sondern auch den eindeutigen Nachweis des Kondensats möglich machte.

Beim Durchgang durch die Probe erzeugen die Neutronen Spinwellen - wellenförmige Schwingungen der Spins -, an die sie einen Teil ihres Impulses und ihrer Energie abgeben. Aus der Veränderung dieser Größen beim Neutron kann man auf die Eigenschaften der Spinwelle schließen. Im gewöhnlichen Zustand ist der Zusammenhang zwischen der Energie und dem Impuls einer Spinwelle quadratisch, das heißt seine Energie ist proportional zum Quadrat des Impulses. Im vorliegenden Falle war die Energie dem Impuls proportional, was - wie man mit Hilfe theoretischer Berechnungen zeigen konnte - ein klarer Hinweis auf die Entstehung eines Kondensats ist.

Die Forscher

Die Idee für das Experiment stammt von Christian Rüegg, Nordal Cavadini und Albert Furrer, drei Wissenschaftlern von der Eidgenössischen Technischen Hochschule in Zürich. Die schwierige Aufgabe, den benötigten TlCuCl3-Kristall herzustellen, übernahmen Hans Ulrich Güdel und Karl Krämer von der Universität Bern. Nach Messungen am Paul-Scherrer-Institut in Villigen (Schweiz) und am Institut Laue-Langevin in Grenoble entschlossen sich die Zürcher Forscher, auf die technischen Möglichkeiten des Hahn-Meitner-Instituts - insbesondere die weltweit stärksten Magnetfelder für die Neutronenforschung - und die Unterstützung der dort tätigen Wissenschaftler Klaus Habicht und Peter Vorderwisch zurückzugreifen. Die von Michael Meißner und Peter Smeibidl betreuten Anlagen zur Erzeugung extremer Probenumgebungen, wie niedriger Temperaturen oder starker Magnetfelder, sind für viele Forscher der entscheidende Grund, ihre Neutronenstreuexperimente in Berlin durchzuführen.

Kontakt:

Dr. Klaus Habicht
Telefon: (030) 8062-2807
E-Mail: habicht@hmi.de

Dr. Peter Vorderwisch
Telefon: (030) 8062-2171
E-Mail: vorderwisch@hmi.de

Thomas Robertson | idw
Weitere Informationen:
http://www.hmi.de/bensc/sample-env/index_en.html

Weitere Berichte zu: Bose-Einstein-Kondensat Elektron Kondensat Magnetfeld Neutron Spin Tesla

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen