Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Blick auf unendlich kleine zeitliche und räumliche Bereiche

24.05.2000


DFG fördert Schwerpunktprogramm zu Elektronentransfer mit sechs Millionen Mark / Federführung liegt beim Physikalischen Institut der Universität Münster

Die Erforschung des Transfers von Elektronen spielt sich in unvorstellbar geringen zeitlichen und räumlichen Bereichen ab. Globale Modelle gibt es bereits seit längerem, doch die mikroskopischen Mechanismen dieser Reaktionen sind noch nicht bekannt. Sie zu erforschen ist das Ziel des Schwerpunktprogrammes "Dynamik von Elektronentransferprozessen an Grenzflächen", das von der Deutschen Forschungsgemeinschaft (DFG) in den ersten zwei Jahren mit rund 6,5 Millionen Mark gefördert wird und jetzt seine Arbeit aufgenommen hat. Die Federführung dieses interdisziplinären und hochschulübergreifenden Projektes liegt beim Physikalischen Institut der Universität Münster, initiiert wurde es von Prof. Dr. Helmut Zacharias.

Viele wichtige Prozesse in biologischen, chemischen und physikalischen Systemen werden durch den Transfer von Elektronen aus gelöst. Beispiele dafür sind die Photosynthese in Pflanzen und die Mechanismen beim Sehen, katalytische Reaktionen an Grenzflächen, wie im Abgaskatalysator oder bei großtechnischen Synthesereaktoren, sowie Prozesse in Brennstoffzellen und in Solarzellen. Bei all diesen Vorgängen werden den aktiven Molekülen über eine Grenzfläche hinweg Elektronen aus einem Reservoir zur Ver fügung gestellt. Erst dadurch werden die vorher neutralen Moleküle aktiviert und die interessierenden Vorgänge Reaktionen und Energietransfer eingeleitet.

Wie das funktioniert, soll jetzt erforscht werden. Die Schwierigkeit liegt darin, dass dieser Prozess zeitlich im Bereich von einer bis 1000 Femtosekunden angesiedelt ist. Zur Verdeutlichung: 1000 Femtosekunden sind der millionste Teil einer millionstel Sekunde. Erst seit wenigen Jahren ist es möglich, neben einer Ortsauflösung in atomaren Dimension auch die Zeitauflösung in diesen ultrakurzen Zeitbereich direkten Experimenten zugänglich zu machen.

Auf der Nanometerskala, auf der ein Nanometer dem milliardstel Teil eines Meters entspricht, werden auf Oberflächen einzelne Moleküle mit Rastertunnelverfahren spektroskopisch untersucht mit dem Ziel, die dadurch gefundenen elektronischen Zustände auszunutzen, um die Moleküle zu manipulieren. So konnten schon einzelne Moleküle isoliert und gezielt zum Leuchten gebracht werden. Man kann sogar daran denken, künftig eventuell Reaktionen zwischen künstlich nebeneinander gebrachten Molekülen gezielt auszulösen, um Produkte zu erzeugen, die ohne eine solche Manipulation nicht entstehen würden. Eine solche Nanofabrikation kann Wege zu ganz neuen Produkten eröffnen. Denkbare Anwendungen lassen sich später im künftigen Centrum für Nanotechnologie (CeNTech) realisieren.

Zur Untersuchung der Dynamik des Elektronentransferprozesses im Zeitbereich werden zwei Laserpulse mit Dauern zwischen 20 und 100 Femtosekunden eingesetzt. Der erste Puls modifiziert die zu untersuchende Probe, mit dem zweiten, präzise verzögerten Puls werden Veränderungen, die der erste Puls ausgelöst hat, erkannt. Mit einer solchen Pump-Probe-Technik kann man eine Zeitauflösung von einer Femtosekunde oder sogar noch darunter erreichen. In einer Femtosekunde legt Licht, das für die Strecke von der Erde zum Mond nur etwa eine Sekunde benötigt, nur einen Weg von 300 Nanometern zurück. Die optischen Aufbauten, die zwei Lichtpunkte um eine solche Strecke verzögern, müssen also entsprechend hochpräzise sein.

Im Anfangsstadium sollen die Untersuchungen zu den auftretenden Energieverlusten, dem Transport von sogenannten heißen Elektronen, ihrer Beweglichkeit in nur zwei Raumdimensionen und einer gezielten Steuerung an geeigneten Modellsystemen durchgeführt werden. Später ist die Einbindung von komplexen Systemen, wie organischen Filmen oder molekularbiologischen Modellsystemen, geplant. Diese spielen beispielsweise auch für die Biokompatibilität von medizinischen Implantaten wie Siliziumkarbid für Herzklappen eine große Rolle.

Im Forschungsverbund arbeiten bundesweit verschiedene Arbeitsgruppen zusammen, um den Erkenntnisstand im internationalen Maßstab voranzubringen. Neben Experimentatoren ist eine enge Verbindung mit theoretisch arbeitenden Gruppen notwendig, um die Ergebnisse interpretieren zu können. Hier ist die Arbeitsgruppe von Prof. Dr. Johannes Pollmann aus dem Institut für Theoretische Festkörperphysik der Universität Münster federführend beteiligt. Insgesamt ist das Programm auf sechs Jahre und einen Förderumfang von etwa 14 bis 16 Millionen Mark angelegt.

Weitere Informationen finden Sie im WWW:

Brigitte Nussbaum |

Weitere Berichte zu: Elektron Femtosekunde Grenzfläche

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

nachricht Einblicke ins Atom
23.01.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie

Vom Feld in die Schule: Aktuelle Forschung zu moderner Landwirtschaft für den Unterricht

23.01.2017 | Bildung Wissenschaft

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungsnachrichten