Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

ETH-Forschende finden einen neuen magnetischen Zustand der Materie

02.05.2003


Albert Einstein, bekannt als Vater der Relativitätstheorie, hat einige bahnbrechende Erkenntnisse für die moderne Physik geleistet. So hat er zusammen mit dem indischen Physiker Satyendra Nath Bose postuliert, dass bei tiefen Temperaturen markante Unterschiede in den Eigenschaften der Materie zu erwarten sind, wenn deren Bausteine, d.h. Atome oder Elektronen, ihre Individualität verlieren und sich zu einem einheitlichen, grösseren Komplex vereinen.



Forscher der ETH Zürich, des Paul Scherrer Instituts und der Universität Bern haben kürzlich diesen Komplex, das so genannte Bose-Einstein-Kondensat, erstmals für ein magnetisches System, nämlich für die Verbindung Thallium-Kupfer-Trichlorid nachgewiesen. Die Resultate werden in der aktuellen Ausgabe des Wissenschaftsmagazins "Nature" publiziert.



Viele der von uns verwendeten Materialien haben magnetische Eigenschaften. Der Magnetismus kommt dabei dadurch zustande, dass sich ein Teil der Elektronen des Materials quasi als Mini-Magnete geordnet ausrichtet und so im Material ein magnetisches Moment aufbaut. Aus der Forschung resultieren ständig neue magnetische Materialien mit verbesserten Eigenschaften für technische Anwendungen. Besonders intensiv ist heute die interdisziplinäre Forschung von Physikern und Chemikern auf dem Gebiet der molekularen Magnete. Dazu gehört Thallium-Kupfer-Trichlorid. In dieser Verbindung sind die magnetisch aktiven Kupferatome paarweise angeordnet und untereinander mit antiparalleler Ausrichtung der magnetischen Momente gekoppelt. Diese Kopplung führt dazu, dass diese Verbindung natürlich nicht magnetisch ist, aber beim Anlegen eines äusseren Magnetfeldes eine ungewöhnliche Art magnetischer Ordnung einsetzt. Diesen Befund kann man mit der konventionellen Magnetismustheorie nicht erklären, wohl aber mit einem theoretischen Ansatz basierend auf dem Phänomen der Bose-Einstein-Kondensation.

Bose-Einstein-Kondensat in magnetischer Verbindung nachgewiesen

Forschende am Laboratorium für Neutronenstreuung der ETH Zürich und des Paul Scherrer Instituts (PSI) und am Chemie-Departement der Universität Bern haben nun mittels Neutronenstreuexperimenten umfangreiche Untersuchungen der Verbindung Thallium-Kupfer-Trichlorid durchgeführt. Dabei zeigte sich, dass beim Anlegen eines äusseren Magnetfelds der Charakter des energetisch tiefsten Anregungsastes ändert und eine lineare Beziehung zwischen Impuls und Energie aufweist. Diese war theoretisch für die Bose-Einstein-Kondensation vorhergesagt worden. Dieser erstmalige experimentelle Nachweis der Bose-Einstein-Kondensation in einer magnetischen Verbindung, der in der Ausgabe vom 1. Mai 2003 des Wissenschaftsmagazins "Nature" beschrieben wird, ist ein weiterer Meilenstein eines in den Anfängen nicht voll erkannten, aber äusserst wichtigen physikalischen Phänomens.

Bose-Einstein-Kondensation - wichtiges physikalisches Phänomen

Die Bedeutung der Bose-Einstein-Kondensation wurde in Fachkreisen lange nicht erkannt und eher als theoretische Übung eingestuft. Erst mit der Entdeckung der Supraflüssigkeit in Helium-4 wurde die Fachwelt auf die Bose-Einstein-Kondensation aufmerksam, welche das viskositätsfreie Verhalten von flüssigem Helium-4 unterhalb einer Temperatur von 2,17 Kelvin erklärte. 1996 wurde der Physik-Nobelpreis an David M. Lee, Douglas D. Osheroff und Robert C. Richardson für die Entdeckung der Supraflüssigkeit in Helium-3 vergeben. Die Bose-Einstein-Kondensation ist auch die Basis für das Verständnis der Supraleitung, die in der Theorie von John Bardeen, Leon N. Cooper und Robert Schrieffer (Physik-Nobelpreis 1972) auf der durch Gitterschwingungen induzierten Paarung von Elektronen beruht. Erst in den letzten Jahren haben Steven Chu, Claude Cohen und William D. Phillips (Physik-Nobelpreis 1997) Methoden entwickelt, einzelne Atome auf tiefste Temperaturen abzukühlen, mittels Laserlicht einzufangen und damit - in Koexistenz mit gewöhnlichen Atomen - eine Art Superatome herzustellen, deren aussergewöhnliche Eigenschaften auf Grund intensiver Untersuchungen von Eric A. Cornell, Wolfgang Ketterle und Carl E. Wieman (Physik-Nobelpreis 2001) ebenfalls auf der Bose-Einstein-Kondensation beruhen.

Ansprechpartner:
Prof. Albert Furrer
Laboratorium für Neutronenstreuung
ETH Zürich und Paul Scherrer Institut
Telefon +41 (0)56-310 20 88
Telefax +41 (0)56-310 29 39
E-mail albert.furrer@psi.ch

Beatrice Huber | idw
Weitere Informationen:
http://www.psi.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lange Speicherung photonischer Quantenbits für globale Teleportation
12.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik

Wie Brände die Tundra langfristig verändern

12.12.2017 | Ökologie Umwelt- Naturschutz

Gefäßregeneration: Wie sich Wunden schließen

12.12.2017 | Medizin Gesundheit