Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lampen für extremes Ultraviolett

11.12.2000


©AIXUV Elektrische Entladung in einem

dichten Plasma des Edelgases Argon. Bei 250 000 °C sendet die wenige

Millimeter große helle Zone extreme UV-Strahlung

aus.


Lithographische Verfahren erzeugen die feinen Strukturen auf Halbleitern. Bei fortschreitender Miniaturisierung werden Strahlungsquellen mit immer kürzeren Wellenlängen nötig. Nun ist die erste Laborlampe erhältlich, die UV-Strahlung nahe dem Röntgenbereich liefert.

An den Steindruck, den Alois Sennefelder am Ende des 18. Jahrhunderts erfand, erinnert noch der Begriff »Lithographie«. Mikroelektronische Schaltungen werden heute mit lithographischen Methoden auf Halbleiter belichtet und hier wie vor 200 Jahren sind die Ziele die gleichen: Immer kleinere Strukturen sollen immer schneller und immer kostengünstiger übertragen werden. Stark begrenzt wird diese Entwicklung durch die Wellenlänge der verwendeten Lampen - viel feiner geht es nicht.

Für die Serienfertigung von integrierten Schaltkreisen verwendet die Industrie derzeit Laser, die Strahlung im nahen Ultraviolett (248 Nanometer) abgeben. Doch für die nächsten Chipgenerationen hat sie den Weg zu Lampen mit immer kürzeren Wellenlängen angetreten. Lampen im extremen Ultraviolett (EUV bei 10-15 Nanometern) am Übergang zur Röntgenstrahlung werden voraussichtlich ab dem Jahr 2006 eingesetzt.

Der erste kommerzielle Anbieter solcher EUV-Lampen für Labors ist das Unternehmen AIXUV GmbH in Aachen, eine Ausgründung des Fraunhofer-Instituts für Laserphysik ILT. Der Geschäftsführer Dr. Rainer Lebert erinnert sich: »Im September diesen Jahres gründeten wir AIXUV. Mit dem Fraunhofer-Institut schlossen wir einen Linzenzvertrag für die Produktion einer EUV-Lampe ab und weiterhin konnten wir das Unternehmen Lambda Physik AG - einem Technologieführer für Lithographielaser - als Investor gewinnen. Im kommenden Frühjahr werden wir beginnen, EUV-Lampen zu produzieren.«

Ihre Technik: In einer Entladungsröhre wird ein Gas mit einem sehr starken elektrischen Strom von etwa 10 000 Ampère aufgeheizt. Je nach Anwendung handelt es sich dabei um Xenon, Fluor, Sauerstoff aber auch Luft. Es bildet sich ein Plasma, das erheblich dichter und mit 250 000 °C mehr als zehnmal heißer ist, als das in den bekannten Leuchtstoffröhren. Dank der patentierten Entladungsgeometrie der Röhre bildet sich eine Zone von einem halben Millimeter Durchmesser und einigen Millimetern Länge, aus der das Plasma bis zu hundertmal pro Sekunde extreme UV-Strahlung emittiert. Das Gerät, in das die eigentliche Lampe integriert ist, zeichnet sich durch einige Vorteile
gegenüber anderen Strahlungsquellen aus. Es lässt sich schnell an seinem Einsatzort aufbauen, ist einfach zu bedienen, arbeitet lange und stabil und ist kostengünstig in Anschaffung und Betrieb.

Weitere Informationen finden Sie im WWW:


Dr. Johannes Ehrlenspiel | idw

Weitere Berichte zu: AIXUV UV-Strahlung Ultraviolett Wellenlänge

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Klein bestimmt über groß?
29.03.2017 | Max-Planck-Institut für Dynamik und Selbstorganisation

nachricht Quantenkommunikation: Wie man das Rauschen überlistet
29.03.2017 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten