Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Blick in die Nanowelt

28.02.2001


Dr. Peter Hoppe vom Mainzer

Max-Planck-Institut für Chemie vor der Nanosims-Ionenmikrosonde,

einem neuartigen Sekundärionenmassenspektrometer.


Rasterelektronenmikroskopaufnahme eines

präsolaren Siliziumkarbidkorns aus dem Murchison-Meteoriten. Dieses

Relikt eines fernen Sterns hat einen Durchmesser von weniger als

einem Mikrometer und ist mehr als 4,57 Milliarden Jahre

alt.


Die neu entwickelte Nanosims-Ionenmikrosonde eröffnet ein neues Fenster ins Weltall.

Endlich ist es soweit: seit Anfang Februar ziert die kostbare Nanosims-Ionenmikrosonde das eigens für sie neu eingerichtete Laboratorium in der Abteilung Kosmochemie des Max-Planck-Instituts für Chemie in Mainz. Das weltweit zweite Gerät dieser Art ist ein Sekundärionenmassenspektrometer (SIMS) der französischen Firma Cameca, die bei der Festlegung der Spezifikationen und Geräteeigenschaften sowie dem Design und den abschließenden Testmessungen eng mit dem Mainzer Institut und dem Laboratory for Space Sciences an der Washington University in St. Louis - an das vor Kurzem das andere Instrument ging - zusammengearbeitet hat. "Mit der Hilfe der Nanosims-Ionenmikrosonde können wir nun zum ersten Mal Meteoritenmaterie und interstellare Staubpartikel im Größenbereich von weniger als 100 Nanometern (Millionstel eines Millimeters) untersuchen und hoffen damit viele offene Fragen in der Kosmochemie und Astrophysik beantworten zu können", berichtet Dr. Peter Hoppe, Leiter der SIMS-Arbeitsgruppe.

Bei der Sekundärionenmassenspektrometrie wird die feste Probe mit einem Primärionenstrahl, z.B. mit Cäsium- oder Sauerstoffionen, beschossen. Die dabei erzeugten Sekundärionen werden massenspektrometrisch analysiert, wobei ein dreidimensionales Bild der Element- und Isotopenzusammensetzungen einer Probe gewonnen wird. Die SIMS-Methode findet eine breite Anwendung in der Kosmochemie, Geochemie und Geologie. In den letzten Jahren wurden insbesondere präsolare Körner, die älter sind als das Sonnensystem selbst und sich direkt aus Auswurfmaterial von Sternen (Sternenstaub) gebildet haben, untersucht. Die Isotopenanalysen an präsolaren Staubkörnern, die in primitiven Meteoriten gefunden wurden, liefern Aussagen über die stellare Evolution und die Elementbildung durch kernphysikalische Prozesse im Innern von Sternen, das Kornwachstum in Sternatmosphären und die galaktische chemische Evolution.

Die Messungen mit bisherigen Ionenmikrosonden waren auf Partikel mit Durchmessern größer als 0,5 Mikrometer (Tausendstel eines Millimeters) beschränkt. Das heißt auf vergleichsweise große, nicht repräsentative Körner, denn die beobachteten Durchmesser präsolarer Mineralien - wie z.B. Diamant oder Siliziumkarbid - variieren zwischen einigen Nanometern und einigen Mikrometern. Die neue Nanosims ermöglicht eine räumliche Auflösung bis zu 30 Nanometer bei einer hohen Nachweisempfindlichkeit der Sekundärionen. Es können dabei simultan bis zu sechs Isotope gemessen werden. "Damit wird nicht nur ein repräsentativeres Bild der Isotopenzusammensetzung vieler präsolarer Mineralphasen gewonnen", erklärt Dr. Hoppe. "Wir werden gezielt nach kleinen präsolaren Staubkörnern suchen, um damit eventuell bis heute nicht nachweisbare präsolare Mineralphasen, wie z.B. Silikate, zu finden. Die Isotopenmessungen wollen wir auch auf neue astrophysikalisch relevante Elemente - z.B. Elemente der Eisengruppe - ausdehnen."

Mit der neuen Sonde ist eine Vielzahl weiterer Messungen in der Abteilung Kosmochemie geplant. So sollen die Kometenmaterie - wahrscheinlich das ursprünglichste Material in unserem Sonnensystem und daher besonders reich an präsolaren Staubkörnern - und auch heutiger interstellarer Staub untersucht werden. Ein Vergleich von heutigem interstellarem Staub mit solchem aus Meteoriten und Kometen, der vor der Bildung des Sonnensystems, d.h., vor 4,6 Milliarden Jahren entstanden ist, kann wichtige Erkenntnisse über die galaktische chemische Evolution erbringen. Die Nanosims könnte auch dazu beitragen, eine verlässliche Altersbestimmung an direkt gesammeltem Marsgestein zu ermöglichen.

Weitere wichtige Anwendungen sind auch im Bereich der Geochemie und Atmosphärenchemie geplant: Die hohe Auflösung dieses Gerätes wird es ermöglichen, wichtige Fragen zu Differentiation und Evolution der Erde zu beantworten. Wesentliche Fortschritte in der Atmosphärenforschung sind durch die Untersuchung chemischer Reaktionen, die an der Oberfläche von feinen Aerosolpartikeln stattfinden, zu erwarten.

Weitere Informationen erhalten Sie von:
Dr. Peter Hoppe


Max-Planck-Institut für Chemie, Mainz
Tel.: 06131/305 244
E-Mail: hoppe@mpch-mainz.mpg.de

Dr. Mirjana Kotowski | idw

Weitere Berichte zu: Evolution Kosmochemie Nanosims-Ionenmikrosonde Sonnensystem

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften