Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Blick in die Nanowelt

28.02.2001


Dr. Peter Hoppe vom Mainzer

Max-Planck-Institut für Chemie vor der Nanosims-Ionenmikrosonde,

einem neuartigen Sekundärionenmassenspektrometer.


Rasterelektronenmikroskopaufnahme eines

präsolaren Siliziumkarbidkorns aus dem Murchison-Meteoriten. Dieses

Relikt eines fernen Sterns hat einen Durchmesser von weniger als

einem Mikrometer und ist mehr als 4,57 Milliarden Jahre

alt.


Die neu entwickelte Nanosims-Ionenmikrosonde eröffnet ein neues Fenster ins Weltall.

Endlich ist es soweit: seit Anfang Februar ziert die kostbare Nanosims-Ionenmikrosonde das eigens für sie neu eingerichtete Laboratorium in der Abteilung Kosmochemie des Max-Planck-Instituts für Chemie in Mainz. Das weltweit zweite Gerät dieser Art ist ein Sekundärionenmassenspektrometer (SIMS) der französischen Firma Cameca, die bei der Festlegung der Spezifikationen und Geräteeigenschaften sowie dem Design und den abschließenden Testmessungen eng mit dem Mainzer Institut und dem Laboratory for Space Sciences an der Washington University in St. Louis - an das vor Kurzem das andere Instrument ging - zusammengearbeitet hat. "Mit der Hilfe der Nanosims-Ionenmikrosonde können wir nun zum ersten Mal Meteoritenmaterie und interstellare Staubpartikel im Größenbereich von weniger als 100 Nanometern (Millionstel eines Millimeters) untersuchen und hoffen damit viele offene Fragen in der Kosmochemie und Astrophysik beantworten zu können", berichtet Dr. Peter Hoppe, Leiter der SIMS-Arbeitsgruppe.

Bei der Sekundärionenmassenspektrometrie wird die feste Probe mit einem Primärionenstrahl, z.B. mit Cäsium- oder Sauerstoffionen, beschossen. Die dabei erzeugten Sekundärionen werden massenspektrometrisch analysiert, wobei ein dreidimensionales Bild der Element- und Isotopenzusammensetzungen einer Probe gewonnen wird. Die SIMS-Methode findet eine breite Anwendung in der Kosmochemie, Geochemie und Geologie. In den letzten Jahren wurden insbesondere präsolare Körner, die älter sind als das Sonnensystem selbst und sich direkt aus Auswurfmaterial von Sternen (Sternenstaub) gebildet haben, untersucht. Die Isotopenanalysen an präsolaren Staubkörnern, die in primitiven Meteoriten gefunden wurden, liefern Aussagen über die stellare Evolution und die Elementbildung durch kernphysikalische Prozesse im Innern von Sternen, das Kornwachstum in Sternatmosphären und die galaktische chemische Evolution.

Die Messungen mit bisherigen Ionenmikrosonden waren auf Partikel mit Durchmessern größer als 0,5 Mikrometer (Tausendstel eines Millimeters) beschränkt. Das heißt auf vergleichsweise große, nicht repräsentative Körner, denn die beobachteten Durchmesser präsolarer Mineralien - wie z.B. Diamant oder Siliziumkarbid - variieren zwischen einigen Nanometern und einigen Mikrometern. Die neue Nanosims ermöglicht eine räumliche Auflösung bis zu 30 Nanometer bei einer hohen Nachweisempfindlichkeit der Sekundärionen. Es können dabei simultan bis zu sechs Isotope gemessen werden. "Damit wird nicht nur ein repräsentativeres Bild der Isotopenzusammensetzung vieler präsolarer Mineralphasen gewonnen", erklärt Dr. Hoppe. "Wir werden gezielt nach kleinen präsolaren Staubkörnern suchen, um damit eventuell bis heute nicht nachweisbare präsolare Mineralphasen, wie z.B. Silikate, zu finden. Die Isotopenmessungen wollen wir auch auf neue astrophysikalisch relevante Elemente - z.B. Elemente der Eisengruppe - ausdehnen."

Mit der neuen Sonde ist eine Vielzahl weiterer Messungen in der Abteilung Kosmochemie geplant. So sollen die Kometenmaterie - wahrscheinlich das ursprünglichste Material in unserem Sonnensystem und daher besonders reich an präsolaren Staubkörnern - und auch heutiger interstellarer Staub untersucht werden. Ein Vergleich von heutigem interstellarem Staub mit solchem aus Meteoriten und Kometen, der vor der Bildung des Sonnensystems, d.h., vor 4,6 Milliarden Jahren entstanden ist, kann wichtige Erkenntnisse über die galaktische chemische Evolution erbringen. Die Nanosims könnte auch dazu beitragen, eine verlässliche Altersbestimmung an direkt gesammeltem Marsgestein zu ermöglichen.

Weitere wichtige Anwendungen sind auch im Bereich der Geochemie und Atmosphärenchemie geplant: Die hohe Auflösung dieses Gerätes wird es ermöglichen, wichtige Fragen zu Differentiation und Evolution der Erde zu beantworten. Wesentliche Fortschritte in der Atmosphärenforschung sind durch die Untersuchung chemischer Reaktionen, die an der Oberfläche von feinen Aerosolpartikeln stattfinden, zu erwarten.

Weitere Informationen erhalten Sie von:
Dr. Peter Hoppe


Max-Planck-Institut für Chemie, Mainz
Tel.: 06131/305 244
E-Mail: hoppe@mpch-mainz.mpg.de

Dr. Mirjana Kotowski | idw

Weitere Berichte zu: Evolution Kosmochemie Nanosims-Ionenmikrosonde Sonnensystem

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MAIUS-1 – erste Experimente mit ultrakalten Atomen im All
24.01.2017 | Leibniz Universität Hannover

nachricht European XFEL: Forscher können erste Vorschläge für Experimente einreichen
24.01.2017 | European XFEL GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie