Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue DFG-Forschergruppe: Laboratory Astrophysics

11.08.2000


Jena. (11.08.00) Ihre erste Forschergruppe für "Laboratory Astrophysics" hat die Deutsche Forschungsgemeinschaft (DFG) jetzt für die Technische Universität Chemnitz und die Friedrich-Schiller-Universität Jena bewilligt. Sie ist in den nächsten drei Jahren mit knapp drei Millionen Mark ausgestattet und bringt allein für das Astrophysikalische Institut der Uni Jena fünf neue Mitarbeiterstellen. Die Forschergruppe, die gemeinsam von Prof. Dr. Dieter Gerlich (Chemnitz) und Prof. Dr. Thomas Henning (Jena) geleitet wird, befasst sich intensiv mit der Struktur, Dynamik und den Eigenschaften von Molekülen und Festkörperteilchen, wie sie unter den extremen Bedingungen des Weltraums vorkommen - also bei großer Kälte, sehr niedrigen Drücken und Schwerelosigkeit.

Perspektivisch kann die Tätigkeit der neuen Forschergruppe auf bis zu acht Jahre verlängert werden. Der voluminöse Bewilligungsbescheid wird als Anerkennung bisheriger Arbeiten an beiden Universitäten auf dem Gebiet der Laborastrophysik betrachtet.

"Die Physik und Chemie funktioniert im Weltall etwas anders als unter herkömmlichen Bedingungen auf der Erde", erläutert der Jenaer Prof. Thomas Henning, "in vielerlei Hinsicht stehen wir noch vor echten Rätseln." Zum Beispiel bei der Frage, wie etwa die Hälfte des interstellaren Gases in unserer Milchstraße entstanden ist, das als molekularer Wasserstoff (H2) vorkommt. Henning: "Wir vermuten, dass diese einfachen Moleküle sich aus frei schwebenden Wasserstoff-Atomen auf der Oberfläche von Staubteilchen bildeten und dann in den interstellaren Raum gelangten." Wie solche Prozesse ablaufen, hat natürlich noch niemand unmittelbar vor Ort beobachtet; Henning und sein Team versuchen sie aber nun im Labor unter spezifischen Bedingungen nachzubilden.

Letztlich trügen solche Forschungen über die physikalischen und chemischen Abläufe in Molekülwolken und Sonnennebeln dazu bei, die Entstehung von Sternen und Planetensystemen besser zu verstehen, weiß Henning - und sie dienten auch als Basis für eine neue astrobiologische Forschungsrichtung. Henning: "Wenn wir im All nach irgendwelchen Formen von Leben suchen, müssen wir zunächst die chemischen Grundlagen dafür aufklären." Aber auch ganz irdische Effekte will der Jenaer Astrophysiker nicht ausschließen. "Es wäre nicht das erste Mal, dass bei solchen Experimenten neue Wege für die Synthese-Chemie, die Materialwissenschaft oder für experimentelle Techniken entdeckt werden."

Ansprechpartner:
Prof. Dr. Thomas Henning


Astrophysikalisches Institut und Universitäts-Sternwarte der Friedrich-Schiller-Universität Jena
Tel.: 03641/947531, Fax: 947532
E-Mail: henning@astro.uni-jena.de

Prof. Dr. Dieter Gerlich


Institut für Physik der TU Chemnitz
Tel.: 0371/5313135, Fax: 5313103
E-mail: gerlich@physik.tu-chemnitz.de

Friedrich-Schiller-Universität
Referat Öffentlichkeitsarbeit
Dr. Wolfgang Hirsch
Fürstengraben 1
07743 Jena
Tel.: 03641/931031
Fax: 03641/931032
E-Mail: h7wohi@sokrates.verwaltung.uni-jena.de

Dr. Wolfgang Hirsch |

Weitere Berichte zu: Astrophysics DFG-Forschergruppe Molekül

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics