Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Fenster zum Universum an der Universität Jena

29.11.2002


Der Sprecher des neuen Sonderforschungsbereichs "Gravitationswellenastronomie": Prof. Dr. Gernot Neugebauer. (Foto: FSU/Scheere)


Universität Jena erhält fünften Sonderforschungsbereich: "Gravitationswellenastronomie".

... mehr zu:
»Detektor »Gravitationswell »Welle

Wenn zwei Sterne aufeinander prallen, entstehen Gravitationswellen. Diese Gravitationsstrahlung ist allerdings so schwach, dass sie bisher auf der Erde noch nie gemessen werden konnte. Um dies zu ermöglichen, wird derzeit weltweit an Nachweis-Geräten gebaut. Unterstützung erhält die Suche nach den kosmischen Signalen jetzt auch durch einen neuen Sonderforschungsbereich (SFB) an der Friedrich-Schiller-Universität Jena, dessen Einrichtung die Deutsche Forschungsgemeinschaft (DFG) gerade bewilligt hat. Der SFB "Gravitationswellenastronomie - Methoden, Quellen, Beobachtung" ist als "Transregio" ausgelegt und wird gemeinsam mit den Universitäten Tübingen und Hannover sowie den Max-Planck-Instituten für Gravitationsphysik Golm und für Astrophysik Garching betrieben.

"Mit unseren Arbeiten soll ein neues Fenster zum Universum geöffnet und die bisherige auf elektromagnetischer Strahlung basierende Astronomie bereichert werden", sagt Prof. Dr. Gernot Neugebauer. Der Theoretische Physiker von der Universität Jena ist Sprecher des neuen SFB, an dem mehr als 50 Wissenschaftler mitarbeiten werden. Der Sonderforschungsbereich, der mit rund fünfeinhalb Millionen Euro zunächst von 2003-2006 von der DFG gefördert wird, will zum "Verständnis so wichtiger kosmischer Phänomene wie Supernova-Explosionen, Verschmelzen massiver Doppelsterne oder Kollaps zum Schwarzen Loch beitragen und viele der damit verbundenen physikalischen Prozesse überhaupt erst verständlich machen", beschreibt Prof. Neugebauer eine wichtige Zielstellung des Forschungsprojekts.


Gravitationswellen sagte zwar Albert Einstein bereits 1916 vorher, und "seine Theorie ist bestens bestätigt", betont Neugebauer. Die direkte Registrierung der Wellen ist allerdings noch nicht gelungen. Bisher konnte nur durch Beobachtungen des Doppelsternpulsars PSR 1913+16 das Phänomen indirekt nachgewiesen werden. Deshalb sind die beobachtenden Physiker auf besonders intensive Strahlungsquellen angewiesen. Deren Gravitationsstrahlung muss dann unter Umständen viele Millionen Lichtjahre zurücklegen, um schließlich auf das Staubkorn namens Erde zu treffen. Dort muss die Strahlung im kurzen Augenblick des Überstreichens der Erde von den Detektoren registriert und durch ausgeklügelte Methoden aus den allgegenwärtigen Störungen herausgefiltert werden. Aus Einsteinscher Sicht sind unser Raum und unsere Zeit gekrümmt. Gravitationswellen sind Störungen dieser Krümmung, die sich mit Lichtgeschwindigkeit über riesige Entfernungen ausbreiten, versucht Prof. Neugebauer das erwartete Signal zu veranschaulichen.

"Die Straßenbahn in Hannover verursacht weit größere Ausschläge auf GEO600 als das schwache Gravitationssignal", erläutert der Jenaer Physiker. GEO600 ist das deutsche Gerät, das die Wellen registrieren soll. Der Detektor ist vor kurzem in Ruthe bei Hannover in die Startphase eingetreten. Bald nach Beginn des SFB, so hoffen die Forscher, kann das Laser-Interferometer seine Messarbeit aufnehmen. "Es ist das derzeit ausgeklügeltste Gerät auf der Erde, um Gravitationswellen nachzuweisen", setzt Prof. Neugebauer große Hoffnung in die Kollegen aus Hannover, die ihren amerikanischen Konkurrenten noch eine Nasenspitze voraus sind.

Während sich die am SFB beteiligten Experimentalphysiker der Uni Jena vor allem um weitere Qualitätsverbesserungen am Detektor kümmern, soll die Jenaer Theorie-Gruppe die zu erwartenden Signalformen gezielt berechnen. Bedeutend ist dies, damit die Signalempfänger überhaupt wissen, nach welcher Welle sie im Ozean der Signale suchen müssen. "Nur wenn wir Theoretiker gut rechnen, werden unsere messenden und auswertenden Kollegen bei der Registrierung und Auswertung von Gravitationswellensignalen erfolgreich sein können", ist sich der SFB-Sprecher sicher.

Am fünften SFB der Jenaer Universität werden neben Theoretischen und Experimental-Physikern auch Mathematiker einen wichtigen Part übernehmen. Fast die Hälfte der 13 Teilprojekte des transregionalen SFB wird in Jena bearbeitet werden. Weil in diesem Sonderforschungsbereich "die führenden Gruppen Deutschlands auf dem Gebiet der Gravitationswellenphysik zusammenarbeiten", sehen Neugebauer und seine SFB-Kollegen nun gute Möglichkeiten, im globalen Wettbewerb vorn mitzumischen. Der SFB-Sprecher betont aber, dass vor allem eine länderübergreifende Kooperation zum raschen wissenschaftlichem Fortschritt auf dem neuen Arbeitsgebiet führen wird.

Kontakt:

Prof. Dr. Gernot Neugebauer
Theoretisch-Physikalisches Institut der Universität Jena
Fröbelstieg 1, 07743 Jena
Tel.: 03641-947110
Fax: 03641-947102
E-Mail: G.Neugebauer@tpi.uni-jena.de

Axel Burchardt | idw
Weitere Informationen:
http://www.uni-jena.de

Weitere Berichte zu: Detektor Gravitationswell Welle

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Harmonien in der Optoelektronik
21.07.2017 | Georg-August-Universität Göttingen

nachricht Von photonischen Nanoantennen zu besseren Spielekonsolen
20.07.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten