Das Geheimrezept enträtselt

In eine internationalen Forschung nach der feinen Struktur von Stahl haben STW-Forscher enträtselt, wie starkes Stahl entsteht. Indem sie mit einem Röntgenmikroskop glühendes Stahl analysierten, entdeckten die Forscher wie bei einer Temperatur von 900 Grad Celsius plötzlich zahlreiche mikroskopische Kristalle im Stahl entstehen. Die Befunde stehen in Science vom 1. November.

Die mikroskopischen Kristalle in Stahl sind ein Maß für die Stärke des Metalls und bestimmen die Verformungsmerkmale. Wenn im Stahl viele kleine Kristalle vorkommen, ist das Stahl stärker als wenn es aus wenig und großen Kristallen aufgebaut ist. Mit den neuen Befunden kann die Stahlindustrie den Produktionsprozess des Stahls weiter verfeinern und die Produktion besser beherrschen.

Im niederländisch-dänisch-französischen Projekt nach der Entstehung der Mikrostruktur von Stahl richtete das Forschungsteam ein starkes Röntgenbündel auf ein Stück Stahl von gut 900 Grad Celsius. Dies geschah mit dem speziellen Röntgenmikroskop (ESRF) im französischen Grenoble. Die verstreuten Stahlen ergaben Informationen über die Struktur des inneren Stahls.

Das Forschungsteam ließ die Temperatur des Stahls um fünf Grad pro Minute sinken. Bei 822 Grad bekommt das Stahl dann eine andere Kristallstruktur. Während bei hohen Temperaturen Kristalle von circa 50 Mikrometer vorkommen, ist der Umfang der Kristalle unter dieser Temperaturgrenze 10 bis 40 Mikrometer. Die Entstehung derartiger Stahlkristalle wurde noch nie so klar bildlich dargestellt.

Die Geschwindigkeit, mit der sich die Atome neu gliedern, bestimmt zum Großteil die mechanischen Merkmale des Stahls. Indem man schnell kühlt, entstehen sehr viele, jedoch kleine Kristalle, was zu starkem Stahl führt. Der handwerkliche Schmied wusste bereits Stahl zu verstärken, indem er das glühende Stahl plötzlich in Wasser tauchte.

Im Gegensatz zu was Materialforscher früher dachten, erweist sich, dass sich die neuen Kristalle viel einfacher bilden. Die Energie, die für die Umschaltung zwischen der Struktur mit den großen Kristallen und der ’kühlen’ Struktur mit vielen kleinen Kristallen erforderlich ist, ist einige Ordnungen kleiner als die derzeitigen Modelle vorhersagen.

In der Forschung arbeiteten Materialforscher zusammen mit der Technischen Universität Delft, dem Risø National Laboratory in Dänemark und der European Synchrotron Radiation Facility (ESRF) in Frankreich. Der niederländische Teil wurde von der Technologiestiftung STW finanziert.

Nähere Informationen bei Dipl.-Ing. Erik Offerman (Technische Universität Delft, Interfakultäres Reaktor Institut), Tel. +31 (0)15 2783673, Fax +31 (0)15 2788303, E-Mail: s.e.offerman@iri.tudelft.nl

Media Contact

Michel Philippens idw

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer