Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Unerwartet heißes Plasma

21.04.2008
MPQ-Forscher entdecken mit neuer Technik unerwartete Eigenschaften von Laser-induzierten Stickstoff-Plasmen

Laserinduzierte Plasmen haben zahlreiche Anwendungen in der Kernfusion, der Teilchenbeschleunigung sowie für die Erzeugung von Röntgenstrahlung oder Attosekunden-Pulsen im extremen Ultraviolett.

Um die für den jeweiligen Zweck optimalen Eigenschaften einzustellen, bedarf es einer genauen Kenntnis der zeitlichen Entwicklung dieses Zustandes. Dr. Martin Centurion, Peter Reckenthäler und Dr. Ernst Fill aus der Abteilung Attosekunden- und Hochfeldphysik (Leitung Prof. Ferenc Krausz) am Max-Planck-Institut für Quantenoptik (Garching) konnten nun mit einer neuartigen Abfrage-Technik die Plasma-Dynamik in Echtzeit verfolgen (Nature Photonics, DOI 10.1038/nphoton.2008.77).

Dabei zeigte es sich, dass durch ein so genanntes OFI (durch optische Felder induziertes) -Plasma wider Erwarten hohe elektrische und magnetische Felder aufgebaut werden. Diese Erkenntnis kann entscheidende Auswirkungen auf viele Anwendungen lasererzeugter Plasmen haben.

... mehr zu:
»Elektron »Pikosekunde »Plasma
Ein Plasma ist ein heißer und dichter Materiezustand, in dem sich Atome gewissermaßen in ihre Bestandteile - Kerne und Elektronen - aufgelöst haben, sodass positiv geladene Ionen und negativ geladene Elektronen gleichberechtigt nebeneinander existieren. Nach gängigen Theorien ist das Innere eines Plasmas ein feldfreier Raum, in dem die elektrischen Ladungen gleichförmig verteilt sind. Nur innerhalb kleinster Dimensionen, der sogenannten Debye-Länge (etwa 0,1 Mikrometer) sollte es zu Fluktuationen von elektrischen Ladungen kommen. Die Untersuchungen haben jedoch gezeigt, dass sich im Zentrum eines OFI-Plasmas offenbar ein positiv geladener Bereich herausbildet, den eine weit über die Debye-Länge herausreichende Wolke von Elektronen umgibt.

Zur Erzeugung eines OFI-Plasmas lassen die Wissenschaftler aus einer Düse Stickstoff strömen. Diesen Gasstrahl beschießen sie mit intensiven, nur 50 Femtosekunden (1 fs=10 hoch -15 sec) dauernden Laserpulsen aus dem sichtbaren Spektralbereich. Die hohen Feldstärken innerhalb der Pulse ionisieren die Atome und führen zur Plasmabildung im Laserbrennpunkt. Dieses Gasplasma wird anschließend mit drei Pikosekunden währenden Pulsen (1 ps = 10 hoch -12 sec) aus Elektronen bombardiert, die eine Energie von 20 Kiloelektronenvolt haben. Die Repetitionsrate der Laser- und Elektronenpulse beträgt 1 kHz (=1000 Pulse pro Sekunde).

Nach dem Passieren des Plasmas wird der Elektronenstrahl (Durchmesser: 3 mm) auf einem Detektor nachgewiesen. Die Wirkung des Plasmas auf den "Abfragestrahl" aus Elektronen spiegelt sich in deren Verteilung wieder: Für ein feldfreies Plasma würde man erwarten, dass die Elektronen den Detektor gleichmäßig bedecken und nur durch die Gasdüse abgeblockt werden. Die Experimente zeigten jedoch, dass auf dem Detektor ein interessantes, sich rasch veränderndes Muster entsteht.

Um die zeitliche Entwicklung des Plasmas zu verfolgen, wird die Zeit zwischen Laser- und Abfrage-Puls variiert. Die so im Abstand von wenigen Pikosekunden gewonnenen Aufnahmen (siehe Abbildung unten von links nach rechts) zeigen folgendes: zunächst - nach einigen wenigen Pikosekunden - entsteht im Bereich des Laserbrennpunkts ein "Loch" im Elektronenstrahl. Die hier fehlenden Elektronen sind offenbar in zwei keulenförmige Gebiete abgewandert, die sich entlang des Laserstrahls auf jeder Seite des Plasma-Gebietes ausbreiten. Diese Entwicklung hält etwa 80 Pikosekunden lang an. Dann häufen sich die Abfrage-Elektronen zu einem hellen "Fleck" im Zentrum an, sodass ihre Dichte hier sogar größer als im ursprünglichen Strahl ist. Nach etwa 300 Pikosekunden werden diese Muster allmählich unscharf.

Für diese Beobachtungen haben die Wissenschaftler folgende Erklärung: Bereits kurz nach der Erzeugung des Plasmas durch den Laserpuls formt sich im Zentrum ein positiv geladener Bereich, den eine Wolke heißer Elektronen umgibt. Durch diese Ladungstrennung entstehen elektrische und magnetische Felder, die die Elektronen des "Abfragestrahls" so ablenken, dass sich die oben beschriebene Verteilung ergibt.

Die Elektronenwolke reicht über das ursprüngliche Plasma hinaus, nach 100 Pikosekunden ist ihr Radius etwa 1000 mal größer als die Debye-Länge. Unter diesen Bedingungen wird der Abfragestrahl jetzt auf das Zentrum des Detektors fokussiert, was das Auftreten des hellen Flecks erklärt.

Numerische Simulationen, die auf diesen Annahmen beruhen, geben die experimentellen Daten gut wieder und erlauben es, Parameter wie Feldstärken, Gesamtladung und Elektronentemperatur zu berechnen. Sie zeigen, dass die beschriebenen Ladungsverteilungen nur dann auftreten können, wenn sich einige der Plasma-Elektronen extrem aufheizen und viel heißer werden als das Plasma selbst. Ein Prozess, der dies bewirken kann, sind Stöße der zurückkehrenden oszillierenden Elektronen mit den Atomkernen.

Die hier demonstrierte "Deflektometrie"-Technik vermag Änderungen der Plasma-Entwicklung innerhalb von einigen Pikosekunden mit einer räumlichen Auflösung von 30 Mikrometern einzufangen. Ihre hohe Empfindlichkeit beruht darauf, dass kleine Ladungsverschiebungen innerhalb des Plasmas sich als Störungen im räumlichen Profil des Elektronenstrahls bemerkbar machen. Die neue Methode birgt das Potential, die Physik lasererzeugter Plasmen besser zu verstehen und eventuell auf Plasmen basierende Elektronen- und Ionenbeschleuniger gezielt zu verbessern. [O.M.]

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Berichte zu: Elektron Pikosekunde Plasma

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle
07.12.2016 | Goethe-Universität Frankfurt am Main

nachricht Das Universum enthält weniger Materie als gedacht
07.12.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie