Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Unerwartet heißes Plasma

21.04.2008
MPQ-Forscher entdecken mit neuer Technik unerwartete Eigenschaften von Laser-induzierten Stickstoff-Plasmen

Laserinduzierte Plasmen haben zahlreiche Anwendungen in der Kernfusion, der Teilchenbeschleunigung sowie für die Erzeugung von Röntgenstrahlung oder Attosekunden-Pulsen im extremen Ultraviolett.

Um die für den jeweiligen Zweck optimalen Eigenschaften einzustellen, bedarf es einer genauen Kenntnis der zeitlichen Entwicklung dieses Zustandes. Dr. Martin Centurion, Peter Reckenthäler und Dr. Ernst Fill aus der Abteilung Attosekunden- und Hochfeldphysik (Leitung Prof. Ferenc Krausz) am Max-Planck-Institut für Quantenoptik (Garching) konnten nun mit einer neuartigen Abfrage-Technik die Plasma-Dynamik in Echtzeit verfolgen (Nature Photonics, DOI 10.1038/nphoton.2008.77).

Dabei zeigte es sich, dass durch ein so genanntes OFI (durch optische Felder induziertes) -Plasma wider Erwarten hohe elektrische und magnetische Felder aufgebaut werden. Diese Erkenntnis kann entscheidende Auswirkungen auf viele Anwendungen lasererzeugter Plasmen haben.

... mehr zu:
»Elektron »Pikosekunde »Plasma
Ein Plasma ist ein heißer und dichter Materiezustand, in dem sich Atome gewissermaßen in ihre Bestandteile - Kerne und Elektronen - aufgelöst haben, sodass positiv geladene Ionen und negativ geladene Elektronen gleichberechtigt nebeneinander existieren. Nach gängigen Theorien ist das Innere eines Plasmas ein feldfreier Raum, in dem die elektrischen Ladungen gleichförmig verteilt sind. Nur innerhalb kleinster Dimensionen, der sogenannten Debye-Länge (etwa 0,1 Mikrometer) sollte es zu Fluktuationen von elektrischen Ladungen kommen. Die Untersuchungen haben jedoch gezeigt, dass sich im Zentrum eines OFI-Plasmas offenbar ein positiv geladener Bereich herausbildet, den eine weit über die Debye-Länge herausreichende Wolke von Elektronen umgibt.

Zur Erzeugung eines OFI-Plasmas lassen die Wissenschaftler aus einer Düse Stickstoff strömen. Diesen Gasstrahl beschießen sie mit intensiven, nur 50 Femtosekunden (1 fs=10 hoch -15 sec) dauernden Laserpulsen aus dem sichtbaren Spektralbereich. Die hohen Feldstärken innerhalb der Pulse ionisieren die Atome und führen zur Plasmabildung im Laserbrennpunkt. Dieses Gasplasma wird anschließend mit drei Pikosekunden währenden Pulsen (1 ps = 10 hoch -12 sec) aus Elektronen bombardiert, die eine Energie von 20 Kiloelektronenvolt haben. Die Repetitionsrate der Laser- und Elektronenpulse beträgt 1 kHz (=1000 Pulse pro Sekunde).

Nach dem Passieren des Plasmas wird der Elektronenstrahl (Durchmesser: 3 mm) auf einem Detektor nachgewiesen. Die Wirkung des Plasmas auf den "Abfragestrahl" aus Elektronen spiegelt sich in deren Verteilung wieder: Für ein feldfreies Plasma würde man erwarten, dass die Elektronen den Detektor gleichmäßig bedecken und nur durch die Gasdüse abgeblockt werden. Die Experimente zeigten jedoch, dass auf dem Detektor ein interessantes, sich rasch veränderndes Muster entsteht.

Um die zeitliche Entwicklung des Plasmas zu verfolgen, wird die Zeit zwischen Laser- und Abfrage-Puls variiert. Die so im Abstand von wenigen Pikosekunden gewonnenen Aufnahmen (siehe Abbildung unten von links nach rechts) zeigen folgendes: zunächst - nach einigen wenigen Pikosekunden - entsteht im Bereich des Laserbrennpunkts ein "Loch" im Elektronenstrahl. Die hier fehlenden Elektronen sind offenbar in zwei keulenförmige Gebiete abgewandert, die sich entlang des Laserstrahls auf jeder Seite des Plasma-Gebietes ausbreiten. Diese Entwicklung hält etwa 80 Pikosekunden lang an. Dann häufen sich die Abfrage-Elektronen zu einem hellen "Fleck" im Zentrum an, sodass ihre Dichte hier sogar größer als im ursprünglichen Strahl ist. Nach etwa 300 Pikosekunden werden diese Muster allmählich unscharf.

Für diese Beobachtungen haben die Wissenschaftler folgende Erklärung: Bereits kurz nach der Erzeugung des Plasmas durch den Laserpuls formt sich im Zentrum ein positiv geladener Bereich, den eine Wolke heißer Elektronen umgibt. Durch diese Ladungstrennung entstehen elektrische und magnetische Felder, die die Elektronen des "Abfragestrahls" so ablenken, dass sich die oben beschriebene Verteilung ergibt.

Die Elektronenwolke reicht über das ursprüngliche Plasma hinaus, nach 100 Pikosekunden ist ihr Radius etwa 1000 mal größer als die Debye-Länge. Unter diesen Bedingungen wird der Abfragestrahl jetzt auf das Zentrum des Detektors fokussiert, was das Auftreten des hellen Flecks erklärt.

Numerische Simulationen, die auf diesen Annahmen beruhen, geben die experimentellen Daten gut wieder und erlauben es, Parameter wie Feldstärken, Gesamtladung und Elektronentemperatur zu berechnen. Sie zeigen, dass die beschriebenen Ladungsverteilungen nur dann auftreten können, wenn sich einige der Plasma-Elektronen extrem aufheizen und viel heißer werden als das Plasma selbst. Ein Prozess, der dies bewirken kann, sind Stöße der zurückkehrenden oszillierenden Elektronen mit den Atomkernen.

Die hier demonstrierte "Deflektometrie"-Technik vermag Änderungen der Plasma-Entwicklung innerhalb von einigen Pikosekunden mit einer räumlichen Auflösung von 30 Mikrometern einzufangen. Ihre hohe Empfindlichkeit beruht darauf, dass kleine Ladungsverschiebungen innerhalb des Plasmas sich als Störungen im räumlichen Profil des Elektronenstrahls bemerkbar machen. Die neue Methode birgt das Potential, die Physik lasererzeugter Plasmen besser zu verstehen und eventuell auf Plasmen basierende Elektronen- und Ionenbeschleuniger gezielt zu verbessern. [O.M.]

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Berichte zu: Elektron Pikosekunde Plasma

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

nachricht Innovative High Power LED Light Engine für den UV Bereich
22.06.2017 | Omicron - Laserage Laserprodukte GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Repairon erhält Finanzierung für die Entwicklung künstlicher Herzmuskelgewebe

23.06.2017 | Förderungen Preise

Zukunftstechnologie 3D-Druck: Raubkopien mit sicherem Lizenzmanagement verhindern

23.06.2017 | Informationstechnologie

Virologen der Saar-Uni entdecken neuen Mechanismus, der die Hautkrebs-Entstehung begünstigt

23.06.2017 | Biowissenschaften Chemie