Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Unerwartet heißes Plasma

21.04.2008
MPQ-Forscher entdecken mit neuer Technik unerwartete Eigenschaften von Laser-induzierten Stickstoff-Plasmen

Laserinduzierte Plasmen haben zahlreiche Anwendungen in der Kernfusion, der Teilchenbeschleunigung sowie für die Erzeugung von Röntgenstrahlung oder Attosekunden-Pulsen im extremen Ultraviolett.

Um die für den jeweiligen Zweck optimalen Eigenschaften einzustellen, bedarf es einer genauen Kenntnis der zeitlichen Entwicklung dieses Zustandes. Dr. Martin Centurion, Peter Reckenthäler und Dr. Ernst Fill aus der Abteilung Attosekunden- und Hochfeldphysik (Leitung Prof. Ferenc Krausz) am Max-Planck-Institut für Quantenoptik (Garching) konnten nun mit einer neuartigen Abfrage-Technik die Plasma-Dynamik in Echtzeit verfolgen (Nature Photonics, DOI 10.1038/nphoton.2008.77).

Dabei zeigte es sich, dass durch ein so genanntes OFI (durch optische Felder induziertes) -Plasma wider Erwarten hohe elektrische und magnetische Felder aufgebaut werden. Diese Erkenntnis kann entscheidende Auswirkungen auf viele Anwendungen lasererzeugter Plasmen haben.

... mehr zu:
»Elektron »Pikosekunde »Plasma
Ein Plasma ist ein heißer und dichter Materiezustand, in dem sich Atome gewissermaßen in ihre Bestandteile - Kerne und Elektronen - aufgelöst haben, sodass positiv geladene Ionen und negativ geladene Elektronen gleichberechtigt nebeneinander existieren. Nach gängigen Theorien ist das Innere eines Plasmas ein feldfreier Raum, in dem die elektrischen Ladungen gleichförmig verteilt sind. Nur innerhalb kleinster Dimensionen, der sogenannten Debye-Länge (etwa 0,1 Mikrometer) sollte es zu Fluktuationen von elektrischen Ladungen kommen. Die Untersuchungen haben jedoch gezeigt, dass sich im Zentrum eines OFI-Plasmas offenbar ein positiv geladener Bereich herausbildet, den eine weit über die Debye-Länge herausreichende Wolke von Elektronen umgibt.

Zur Erzeugung eines OFI-Plasmas lassen die Wissenschaftler aus einer Düse Stickstoff strömen. Diesen Gasstrahl beschießen sie mit intensiven, nur 50 Femtosekunden (1 fs=10 hoch -15 sec) dauernden Laserpulsen aus dem sichtbaren Spektralbereich. Die hohen Feldstärken innerhalb der Pulse ionisieren die Atome und führen zur Plasmabildung im Laserbrennpunkt. Dieses Gasplasma wird anschließend mit drei Pikosekunden währenden Pulsen (1 ps = 10 hoch -12 sec) aus Elektronen bombardiert, die eine Energie von 20 Kiloelektronenvolt haben. Die Repetitionsrate der Laser- und Elektronenpulse beträgt 1 kHz (=1000 Pulse pro Sekunde).

Nach dem Passieren des Plasmas wird der Elektronenstrahl (Durchmesser: 3 mm) auf einem Detektor nachgewiesen. Die Wirkung des Plasmas auf den "Abfragestrahl" aus Elektronen spiegelt sich in deren Verteilung wieder: Für ein feldfreies Plasma würde man erwarten, dass die Elektronen den Detektor gleichmäßig bedecken und nur durch die Gasdüse abgeblockt werden. Die Experimente zeigten jedoch, dass auf dem Detektor ein interessantes, sich rasch veränderndes Muster entsteht.

Um die zeitliche Entwicklung des Plasmas zu verfolgen, wird die Zeit zwischen Laser- und Abfrage-Puls variiert. Die so im Abstand von wenigen Pikosekunden gewonnenen Aufnahmen (siehe Abbildung unten von links nach rechts) zeigen folgendes: zunächst - nach einigen wenigen Pikosekunden - entsteht im Bereich des Laserbrennpunkts ein "Loch" im Elektronenstrahl. Die hier fehlenden Elektronen sind offenbar in zwei keulenförmige Gebiete abgewandert, die sich entlang des Laserstrahls auf jeder Seite des Plasma-Gebietes ausbreiten. Diese Entwicklung hält etwa 80 Pikosekunden lang an. Dann häufen sich die Abfrage-Elektronen zu einem hellen "Fleck" im Zentrum an, sodass ihre Dichte hier sogar größer als im ursprünglichen Strahl ist. Nach etwa 300 Pikosekunden werden diese Muster allmählich unscharf.

Für diese Beobachtungen haben die Wissenschaftler folgende Erklärung: Bereits kurz nach der Erzeugung des Plasmas durch den Laserpuls formt sich im Zentrum ein positiv geladener Bereich, den eine Wolke heißer Elektronen umgibt. Durch diese Ladungstrennung entstehen elektrische und magnetische Felder, die die Elektronen des "Abfragestrahls" so ablenken, dass sich die oben beschriebene Verteilung ergibt.

Die Elektronenwolke reicht über das ursprüngliche Plasma hinaus, nach 100 Pikosekunden ist ihr Radius etwa 1000 mal größer als die Debye-Länge. Unter diesen Bedingungen wird der Abfragestrahl jetzt auf das Zentrum des Detektors fokussiert, was das Auftreten des hellen Flecks erklärt.

Numerische Simulationen, die auf diesen Annahmen beruhen, geben die experimentellen Daten gut wieder und erlauben es, Parameter wie Feldstärken, Gesamtladung und Elektronentemperatur zu berechnen. Sie zeigen, dass die beschriebenen Ladungsverteilungen nur dann auftreten können, wenn sich einige der Plasma-Elektronen extrem aufheizen und viel heißer werden als das Plasma selbst. Ein Prozess, der dies bewirken kann, sind Stöße der zurückkehrenden oszillierenden Elektronen mit den Atomkernen.

Die hier demonstrierte "Deflektometrie"-Technik vermag Änderungen der Plasma-Entwicklung innerhalb von einigen Pikosekunden mit einer räumlichen Auflösung von 30 Mikrometern einzufangen. Ihre hohe Empfindlichkeit beruht darauf, dass kleine Ladungsverschiebungen innerhalb des Plasmas sich als Störungen im räumlichen Profil des Elektronenstrahls bemerkbar machen. Die neue Methode birgt das Potential, die Physik lasererzeugter Plasmen besser zu verstehen und eventuell auf Plasmen basierende Elektronen- und Ionenbeschleuniger gezielt zu verbessern. [O.M.]

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Berichte zu: Elektron Pikosekunde Plasma

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lasing am Limit
15.02.2018 | Technische Universität Berlin

nachricht Forschung für die LED-Tapete der Zukunft
15.02.2018 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

Von Bitcoins bis zur Genomchirurgie

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zukunft wird gedruckt

19.02.2018 | Architektur Bauwesen

Fraunhofer HHI präsentiert neueste VR- und 5G-Technologien auf dem Mobile World Congress

19.02.2018 | Messenachrichten

Stabile Gashydrate lösen Hangrutschung aus

19.02.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics