Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Unerwartet heißes Plasma

21.04.2008
MPQ-Forscher entdecken mit neuer Technik unerwartete Eigenschaften von Laser-induzierten Stickstoff-Plasmen

Laserinduzierte Plasmen haben zahlreiche Anwendungen in der Kernfusion, der Teilchenbeschleunigung sowie für die Erzeugung von Röntgenstrahlung oder Attosekunden-Pulsen im extremen Ultraviolett.

Um die für den jeweiligen Zweck optimalen Eigenschaften einzustellen, bedarf es einer genauen Kenntnis der zeitlichen Entwicklung dieses Zustandes. Dr. Martin Centurion, Peter Reckenthäler und Dr. Ernst Fill aus der Abteilung Attosekunden- und Hochfeldphysik (Leitung Prof. Ferenc Krausz) am Max-Planck-Institut für Quantenoptik (Garching) konnten nun mit einer neuartigen Abfrage-Technik die Plasma-Dynamik in Echtzeit verfolgen (Nature Photonics, DOI 10.1038/nphoton.2008.77).

Dabei zeigte es sich, dass durch ein so genanntes OFI (durch optische Felder induziertes) -Plasma wider Erwarten hohe elektrische und magnetische Felder aufgebaut werden. Diese Erkenntnis kann entscheidende Auswirkungen auf viele Anwendungen lasererzeugter Plasmen haben.

... mehr zu:
»Elektron »Pikosekunde »Plasma
Ein Plasma ist ein heißer und dichter Materiezustand, in dem sich Atome gewissermaßen in ihre Bestandteile - Kerne und Elektronen - aufgelöst haben, sodass positiv geladene Ionen und negativ geladene Elektronen gleichberechtigt nebeneinander existieren. Nach gängigen Theorien ist das Innere eines Plasmas ein feldfreier Raum, in dem die elektrischen Ladungen gleichförmig verteilt sind. Nur innerhalb kleinster Dimensionen, der sogenannten Debye-Länge (etwa 0,1 Mikrometer) sollte es zu Fluktuationen von elektrischen Ladungen kommen. Die Untersuchungen haben jedoch gezeigt, dass sich im Zentrum eines OFI-Plasmas offenbar ein positiv geladener Bereich herausbildet, den eine weit über die Debye-Länge herausreichende Wolke von Elektronen umgibt.

Zur Erzeugung eines OFI-Plasmas lassen die Wissenschaftler aus einer Düse Stickstoff strömen. Diesen Gasstrahl beschießen sie mit intensiven, nur 50 Femtosekunden (1 fs=10 hoch -15 sec) dauernden Laserpulsen aus dem sichtbaren Spektralbereich. Die hohen Feldstärken innerhalb der Pulse ionisieren die Atome und führen zur Plasmabildung im Laserbrennpunkt. Dieses Gasplasma wird anschließend mit drei Pikosekunden währenden Pulsen (1 ps = 10 hoch -12 sec) aus Elektronen bombardiert, die eine Energie von 20 Kiloelektronenvolt haben. Die Repetitionsrate der Laser- und Elektronenpulse beträgt 1 kHz (=1000 Pulse pro Sekunde).

Nach dem Passieren des Plasmas wird der Elektronenstrahl (Durchmesser: 3 mm) auf einem Detektor nachgewiesen. Die Wirkung des Plasmas auf den "Abfragestrahl" aus Elektronen spiegelt sich in deren Verteilung wieder: Für ein feldfreies Plasma würde man erwarten, dass die Elektronen den Detektor gleichmäßig bedecken und nur durch die Gasdüse abgeblockt werden. Die Experimente zeigten jedoch, dass auf dem Detektor ein interessantes, sich rasch veränderndes Muster entsteht.

Um die zeitliche Entwicklung des Plasmas zu verfolgen, wird die Zeit zwischen Laser- und Abfrage-Puls variiert. Die so im Abstand von wenigen Pikosekunden gewonnenen Aufnahmen (siehe Abbildung unten von links nach rechts) zeigen folgendes: zunächst - nach einigen wenigen Pikosekunden - entsteht im Bereich des Laserbrennpunkts ein "Loch" im Elektronenstrahl. Die hier fehlenden Elektronen sind offenbar in zwei keulenförmige Gebiete abgewandert, die sich entlang des Laserstrahls auf jeder Seite des Plasma-Gebietes ausbreiten. Diese Entwicklung hält etwa 80 Pikosekunden lang an. Dann häufen sich die Abfrage-Elektronen zu einem hellen "Fleck" im Zentrum an, sodass ihre Dichte hier sogar größer als im ursprünglichen Strahl ist. Nach etwa 300 Pikosekunden werden diese Muster allmählich unscharf.

Für diese Beobachtungen haben die Wissenschaftler folgende Erklärung: Bereits kurz nach der Erzeugung des Plasmas durch den Laserpuls formt sich im Zentrum ein positiv geladener Bereich, den eine Wolke heißer Elektronen umgibt. Durch diese Ladungstrennung entstehen elektrische und magnetische Felder, die die Elektronen des "Abfragestrahls" so ablenken, dass sich die oben beschriebene Verteilung ergibt.

Die Elektronenwolke reicht über das ursprüngliche Plasma hinaus, nach 100 Pikosekunden ist ihr Radius etwa 1000 mal größer als die Debye-Länge. Unter diesen Bedingungen wird der Abfragestrahl jetzt auf das Zentrum des Detektors fokussiert, was das Auftreten des hellen Flecks erklärt.

Numerische Simulationen, die auf diesen Annahmen beruhen, geben die experimentellen Daten gut wieder und erlauben es, Parameter wie Feldstärken, Gesamtladung und Elektronentemperatur zu berechnen. Sie zeigen, dass die beschriebenen Ladungsverteilungen nur dann auftreten können, wenn sich einige der Plasma-Elektronen extrem aufheizen und viel heißer werden als das Plasma selbst. Ein Prozess, der dies bewirken kann, sind Stöße der zurückkehrenden oszillierenden Elektronen mit den Atomkernen.

Die hier demonstrierte "Deflektometrie"-Technik vermag Änderungen der Plasma-Entwicklung innerhalb von einigen Pikosekunden mit einer räumlichen Auflösung von 30 Mikrometern einzufangen. Ihre hohe Empfindlichkeit beruht darauf, dass kleine Ladungsverschiebungen innerhalb des Plasmas sich als Störungen im räumlichen Profil des Elektronenstrahls bemerkbar machen. Die neue Methode birgt das Potential, die Physik lasererzeugter Plasmen besser zu verstehen und eventuell auf Plasmen basierende Elektronen- und Ionenbeschleuniger gezielt zu verbessern. [O.M.]

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Berichte zu: Elektron Pikosekunde Plasma

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Topologische Isolatoren: Neuer Phasenübergang entdeckt
17.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Vorhersagen bestätigt: Schwere Elemente bei Neutronensternverschmelzungen nachgewiesen
17.10.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mobilität 4.0: Konferenz an der Jacobs University

18.10.2017 | Veranstaltungen

Smart MES 2017: die Fertigung der Zukunft

18.10.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

18.10.2017 | Biowissenschaften Chemie

Biokunststoffe könnten auch in Traktoren die Richtung angeben

18.10.2017 | Messenachrichten

»ILIGHTS«-Studie gestartet: Licht soll Wohlbefinden von Schichtarbeitern verbessern

18.10.2017 | Energie und Elektrotechnik