Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Casting der Moleküle

04.04.2008
Berliner Wissenschaftler sortieren die Teilchen nach ihrer Struktur

Viele größere Moleküle haben etwas mit Puppen gemeinsam - ihre Glieder bewegen sich. Physiker des Fritz-Haber-Instituts der Max-Planck-Gesellschaft in Berlin können Moleküle jetzt danach sortieren, in welche Richtung deren Ärmchen und Beinchen weisen. Diese Konformere - Moleküle mit verschiedenen Haltungen - lassen sich gewöhnlich kaum unterscheiden, und ohnehin zappeln die Glieder der Moleküle meistens heftig. Für Biomoleküle ist die Haltung jedoch wichtig: Sie können ihre Aufgaben nur erfüllen, wenn sie ihre Gliedmaßen richtig orientieren.


Die Haltung der Moleküle entscheidet, ob sie das Ende dieser offenen Röhre erreichen. Das elektrische Feld zwischen den vier Metallstäben wechselt ständig, sodass nur Konformere mit dem passenden Verhältnis aus Masse und Dipolmoment durch die offene Röhre gelangen. Bild: Fritz-Haber-Institut der Max-Planck-Gesellschaft

Schnappschüsse von Biomolekülen zu machen, ist eine knifflige Angelegenheit. Einigermaßen leicht haben es Biochemiker noch, wenn sie aus den Verbindungen Kristalle züchten können. Alternativ können sie künftig vielleicht Gasstrahlen dieser Moleküle erzeugen und durch ihre Messinstrumente schicken. Dann überlagern sich üblicherweise allerdings die Bilder der verschiedenen Konformere und die Forscher erhalten nur ein verschwommenes Bild der Teilchen.

"Wir haben jetzt einen Weg gefunden, die Konformere zu trennen, obwohl sie chemisch und physikalisch kaum auseinander zu halten sind", sagt Jochen Küpper, der die Wissenschaftlergruppe am Fritz-Haber-Institut leitet. Nur einen Unterschied gibt es häufiger: Die Konformere besitzen in vielen Fällen verschieden starke Dipole, die positiven und negativen Ladungen sind in den Molekülen also unterschiedlich verteilt. Deshalb spüren sie die Kraft eines elektrischen Feldes unterschiedlich stark. Und das nützen die Forscher aus.

"Unser Sieb für Konformere arbeitet wie ein Quadrupolmassenfilter", erklärt Frank Filsinger, der als Doktorand den größten Teil der Arbeiten vorgenommen hat. Mit einem Quadrupolmassenfilter werden in vielen Laboren Moleküle nach dem Verhältnis zwischen ihrer Masse und Ladung getrennt. Ganz ähnlich sortiert die Apparatur der Berliner Forscher die Teilchen - nur dass sie diese entsprechend ihrer Masse und ihrem Dipolmoment trennt. Mit dem Dipolmoment wird die Stärke eines Dipols gemessen.

Die Wissenschaftler haben ihre neue Methode an einem Aminophenol erprobt - und zwar an zwei Konformeren, in denen die Hydroxidgruppe des Moleküls unterschiedlich orientiert ist. Diese Gruppe besteht aus einem Sauerstoff- und einem Wasserstoffatom und ist für Alkohole charakteristisch. Ihre unterschiedlichen Orientierungen im Aminophenol heißen cis- und trans-Stellung: In der cis-Version weist die Hydroxidgruppe zur einen Seite, in der trans-Variante genau zur anderen Seite des Moleküls. Aus diesem Grund ist das Dipolmoment des cis-Aminophenols etwa dreimal größer als das des trans-Pendants.

Um die beiden Konformere mit den verschiedenen Haltungen des Hydroxidärmchens zu trennen, haben die Forscher eine kleine Menge der Substanz verdampft und zu einem Molekülstrahl gebündelt. Der Strahl legt in der Apparatur der Berliner Forscher genau einen Meter zurück. Damit sich die cis- und trans-Versionen auf dieser Strecke trennen, legen Küpper und seine Mitarbeiter elektrische Felder an, die auf die Moleküle Kräfte ausüben: Sie gruppieren um den Molekularstrahl vier Elektroden - Metallstangen, die unter Spannung stehen und eine Art offene Röhre bilden. Durch diese Röhre saust der Strahl. An zwei Elektroden liegt eine Wechselspannung, die dafür sorgt, dass der positive und der negative Pol ständig hin und her springen. Entsprechend ändert sich die Richtung, in der die Kraft des elektrischen Feldes auf die Moleküle wirkt.

Entscheidend ist dabei die Frequenz des Wechselfelds, also wie schnell die Pole ihre Plätze tauschen. Verschiedene Dipole sprechen auf das Wechselfeld nämlich unterschiedlich gut an. Letztlich gelangen bei einer bestimmten Frequenz des Wechselfeldes nur Moleküle mit einem bestimmten Dipolmoment - genauer gesagt mit einem bestimmten Verhältnis zwischen ihrem Dipolmoment und ihrer Masse - ans Ende der Apparatur. Alle anderen treiben allmählich aus der Flugbahn des Strahls.

Auf diese Weise isolieren die Berliner Forscher um Frank Filsinger nicht nur ein bestimmtes Konformer. Sie können die Konformere sogar noch danach sortieren, wie stark sie rotieren. Das machen Moleküle ständig, aber nicht immer gleich schnell. Für die Stärke der Rotation gibt es ein Maß - die Rotationsquantenzahl. Die ist umso höher, je schneller sich das Molekül dreht. Dann wird allerdings auch der Dipol des Teilchens immer schwächer und das elektrische Feld wirkt schwächer auf das Molekül. "Wir sieben also auch die Moleküle in den niedrigsten Rotationsquantenzuständen heraus", sagt Küpper. Auf diese Weise lassen sich die Moleküle im Raum besonders gut ausrichten. So hoffen die Forscher, künftig alle Teilchen, deren Arme in dieselbe Richtung zeigen, auf die Beine stellen zu können.

"Unsere Methode ergänzt andere neuartige Experimente, wie etwa den Röntgenlaser, der derzeit in Hamburg entsteht." Dieser Röntgenlaser wird in besonders intensivem Licht strahlen, das ihn zu einem sehr empfindlichen Messinstrument macht. Viele Wissenschaftler hoffen daher, mit ihm einzelne Biomoleküle abbilden zu können - die dann natürlich auch nur als einzelnes Konformer vorliegen. In den Aufnahmen des neuen Großgeräts würden sich die Darstellungen verschiedener Molekülhaltungen also nicht zu einem schemenhaften Bild verwischen.

"Wir gehen dagegen den umgekehrten Weg", erklärt Küpper. "Da wir die unterschiedlichen Konformere isolieren können und daher alle Moleküle in der Probe gleich aussehen, sind wir nicht darauf angewiesen, einzelne Moleküle zu untersuchen", sagt Küpper, "sondern könnten die Signalstärke durch die Beobachtung vieler gleich aussehender Moleküle unter Umständen entscheidend vergrößern.

Bislang können er und seine Mitarbeiter mit dem Molekülsieb nur relativ kleine Teilchen trennen. Die Konformere größerer Moleküle zu sortieren, ist aber kein prinzipielles Problem, sondern ein praktisches. "Die Trennnung würde funktionieren", so Küpper, "sehr große ungeladene Moleküle lassen sich bislang jedoch einfach noch nicht zu einem gasförmigen Strahl bündeln." Daran arbeiten weltweit viele Wissenschaftler - auch die Physiker vom Fritz-Haber-Institut.

Originalveröffentlichung:

Frank Filsinger, Undine Erlekam, Gert von Helden, Jochen Küpper, and Gerard Meijer; Selector for structural isomers of neutral molecules

Physical Review Letters 100, 133003 (2008)

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Biomolekül Dipolmoment Molekül Teilchen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie