Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schneller als schnell: Physikochemiker entfernen Elektronen gezielt aus chemischen Bindungen

04.04.2008
Marburger Wissenschaftler haben einen ungewöhnlichen Weg gefunden, um chemische Bindungen kontrolliert aufzubrechen: Die Physikochemiker um Professor Dr. Karl-Michael Weitzel verwenden aufeinander folgende Laserpulse, um die Elektronen zwischen zwei Atomkernen auf eine Seite zu verschieben, so dass die Bindung zerfällt.
Durch den zeitlichen Abstand der beiden Laserpulse ist präzise determiniert, welche Reaktionsprodukte bei dem Experiment überwiegend entstehen.

Was macht eine chemische Bindung aus und wie kann man sie kontrollieren?

Auf diese Frage, die Chemiker und Physiker seit mehr als hundert Jahren beschäftigt, haben Weitzel und seine Kollegen jetzt eine verblüffende Antwort gegeben. Wie man bereits in der Schule lernt, hat chemische Bindung etwas damit zu tun, dass sich Elektronen zwischen zwei oder mehreren atomaren Kernen aufhalten - von diesen sozusagen gemeinsam genutzt werden.

"Wenn Elektronen das Bestehen einer chemischen Bindung konstituieren, dann bedeutet die Abwesenheit von Elektronen zwischen zwei Kernen den Bruch dieser Bindung", erklärt Weitzel den Grundgedanken des Experiments. Doch selbst wenn Elektronen für einen kurzen Moment aus dem Bereich zwischen zwei Kernen herausgelenkt werden, kommen sie normalerweise so schnell wieder zurück, dass die Kerne nur eine gemittelte Bewegung der Elektronen erkennen.

Der Schlüssel zur Kontrolle chemischer Prozesse mittels Kontrolle der Elektronen liegt also darin, diese nicht nur kurzzeitig aus einer chemischen Bindung herauszunehmen, sondern sie auch noch am Zurückkommen zu hindern. Kein Wunder, dass dazu ein extrem schnelles Experiment erforderlich ist - "möglicherweise das schnellste, das je in Marburg durchgeführt wurde", merkt Weitzel an. Wie sich herausstellte, genügen unvorstellbar kleine Zeitunterschiede von 1.35 Femtosekunden, um vorwiegend die eine oder die andere chemische Bindung in einem Molekül zu brechen.

Die Wissenschaftler haben ihren Versuch mit der Verbindung ortho-Xylol durchgeführt (chemische Formel: C8H10). Die Moleküle dieses Gases wurden mit zwei sehr kurzen Laserpulsen optisch angeregt, die jeweils nur 40 Femtosekunden dauerten. Diese beiden Lichtpulse erfolgten in so kurzem zeitlichem Abstand, dass sie überlappten, wodurch es zu Interferenzen kam; darunter versteht man das gegenseitige Aufschaukeln oder die Auslöschung der einander überlagernden Schwingungen.

Weitzel und seine Kollegen variierten die Zeitverzögerung zwischen den beiden Laserpulsen in kleinsten Schritten von 300 Attosekunden, indem sie einen der beiden Strahlen über einen Umweg von wenigen Nanometern führten. Eine Attosekunde entspricht 10-18 Sekunden - zur Veranschaulichung: Licht benötigt etwas mehr als eine Sekunde für die Strecke von der Erde bis zum Mond, das sind fast 400.000 Kilometer. In 300 Attosekunden legt Licht ungefähr 100 Nanometer zurück.

Je nach gewählter Verzögerung zerfielen die ortho-Xylol-Moleküle in unterschiedliche Bruchstücke: Bei einem Abstand von 70 Femtosekunden erreichte die Bildung von CH3+-Ionen ein Maximum und die Bildung von C+ ein Minimum. Sobald sich der Abstand um nur 1.35 Femtosekunden vergrößerte, war es genau umgekehrt. Über die Variation der Verzögerung in diesen unglaublich kleinen Abständen ist also die Kontrolle der Ausbeute konkurrierender chemischer Prozesse möglich.

Dieses neue Phänomen kann in unterschiedlichen Bildern veranschaulicht werden. Die Wissenschaftler erklären ihre Ergebnisse dadurch, dass die Elektronen durch die Interferenzen der ultrakurzen Lichtpulse in synchrone Schwingungen versetzt werden. Dadurch befinden sie sich je nach Verzögerungszeit außerhalb der Reichweite eines der beteiligten Kerne, wodurch eine bestimmte chemische Bindung gebrochen wird - nämlich jeweils dort, wo die Elektronen gerade nicht sind. Die Ergebnisse erschienen am vergangenen Freitag im renommierten Fachjournal "Journal of Chemical Physics".

Originalveröffentlichung:
H.G. Breunig, G. Urbasch, K.-M. Weitzel: Phase control of molecular fragmentation with a pair of femtosecond-laser pulses, J. Chem. Phys. 128 (2008), 121101 (28.März, 2008), http://dx.doi.org/10.1063/1.2898092
Weitere Informationen:
Ansprechpartner: Professor Dr. Karl-Michael Weitzel, Tel.: 06421 28-22360 / 61

Johannes Scholten | idw
Weitere Informationen:
http://www.uni-marburg.de/fb15/ag-weitzel/
http://dx.doi.org/10.1063/1.2898092

Weitere Berichte zu: Attosekunde Elektron Femtosekunde Laserpuls

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

Jenaer Akustik-Tag: Belastende Geräusche minimieren - für den Schutz des Gehörs

27.04.2017 | Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

VLC 200 GT von EMAG: Neue passgenaue Dreh-Schleif-Lösung für die Bearbeitung von Pkw-Getrieberädern

27.04.2017 | Maschinenbau

Induktive Lötprozesse von eldec: Schneller, präziser und sparsamer verlöten

27.04.2017 | Maschinenbau

Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

27.04.2017 | Informationstechnologie