Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schneller als schnell: Physikochemiker entfernen Elektronen gezielt aus chemischen Bindungen

04.04.2008
Marburger Wissenschaftler haben einen ungewöhnlichen Weg gefunden, um chemische Bindungen kontrolliert aufzubrechen: Die Physikochemiker um Professor Dr. Karl-Michael Weitzel verwenden aufeinander folgende Laserpulse, um die Elektronen zwischen zwei Atomkernen auf eine Seite zu verschieben, so dass die Bindung zerfällt.
Durch den zeitlichen Abstand der beiden Laserpulse ist präzise determiniert, welche Reaktionsprodukte bei dem Experiment überwiegend entstehen.

Was macht eine chemische Bindung aus und wie kann man sie kontrollieren?

Auf diese Frage, die Chemiker und Physiker seit mehr als hundert Jahren beschäftigt, haben Weitzel und seine Kollegen jetzt eine verblüffende Antwort gegeben. Wie man bereits in der Schule lernt, hat chemische Bindung etwas damit zu tun, dass sich Elektronen zwischen zwei oder mehreren atomaren Kernen aufhalten - von diesen sozusagen gemeinsam genutzt werden.

"Wenn Elektronen das Bestehen einer chemischen Bindung konstituieren, dann bedeutet die Abwesenheit von Elektronen zwischen zwei Kernen den Bruch dieser Bindung", erklärt Weitzel den Grundgedanken des Experiments. Doch selbst wenn Elektronen für einen kurzen Moment aus dem Bereich zwischen zwei Kernen herausgelenkt werden, kommen sie normalerweise so schnell wieder zurück, dass die Kerne nur eine gemittelte Bewegung der Elektronen erkennen.

Der Schlüssel zur Kontrolle chemischer Prozesse mittels Kontrolle der Elektronen liegt also darin, diese nicht nur kurzzeitig aus einer chemischen Bindung herauszunehmen, sondern sie auch noch am Zurückkommen zu hindern. Kein Wunder, dass dazu ein extrem schnelles Experiment erforderlich ist - "möglicherweise das schnellste, das je in Marburg durchgeführt wurde", merkt Weitzel an. Wie sich herausstellte, genügen unvorstellbar kleine Zeitunterschiede von 1.35 Femtosekunden, um vorwiegend die eine oder die andere chemische Bindung in einem Molekül zu brechen.

Die Wissenschaftler haben ihren Versuch mit der Verbindung ortho-Xylol durchgeführt (chemische Formel: C8H10). Die Moleküle dieses Gases wurden mit zwei sehr kurzen Laserpulsen optisch angeregt, die jeweils nur 40 Femtosekunden dauerten. Diese beiden Lichtpulse erfolgten in so kurzem zeitlichem Abstand, dass sie überlappten, wodurch es zu Interferenzen kam; darunter versteht man das gegenseitige Aufschaukeln oder die Auslöschung der einander überlagernden Schwingungen.

Weitzel und seine Kollegen variierten die Zeitverzögerung zwischen den beiden Laserpulsen in kleinsten Schritten von 300 Attosekunden, indem sie einen der beiden Strahlen über einen Umweg von wenigen Nanometern führten. Eine Attosekunde entspricht 10-18 Sekunden - zur Veranschaulichung: Licht benötigt etwas mehr als eine Sekunde für die Strecke von der Erde bis zum Mond, das sind fast 400.000 Kilometer. In 300 Attosekunden legt Licht ungefähr 100 Nanometer zurück.

Je nach gewählter Verzögerung zerfielen die ortho-Xylol-Moleküle in unterschiedliche Bruchstücke: Bei einem Abstand von 70 Femtosekunden erreichte die Bildung von CH3+-Ionen ein Maximum und die Bildung von C+ ein Minimum. Sobald sich der Abstand um nur 1.35 Femtosekunden vergrößerte, war es genau umgekehrt. Über die Variation der Verzögerung in diesen unglaublich kleinen Abständen ist also die Kontrolle der Ausbeute konkurrierender chemischer Prozesse möglich.

Dieses neue Phänomen kann in unterschiedlichen Bildern veranschaulicht werden. Die Wissenschaftler erklären ihre Ergebnisse dadurch, dass die Elektronen durch die Interferenzen der ultrakurzen Lichtpulse in synchrone Schwingungen versetzt werden. Dadurch befinden sie sich je nach Verzögerungszeit außerhalb der Reichweite eines der beteiligten Kerne, wodurch eine bestimmte chemische Bindung gebrochen wird - nämlich jeweils dort, wo die Elektronen gerade nicht sind. Die Ergebnisse erschienen am vergangenen Freitag im renommierten Fachjournal "Journal of Chemical Physics".

Originalveröffentlichung:
H.G. Breunig, G. Urbasch, K.-M. Weitzel: Phase control of molecular fragmentation with a pair of femtosecond-laser pulses, J. Chem. Phys. 128 (2008), 121101 (28.März, 2008), http://dx.doi.org/10.1063/1.2898092
Weitere Informationen:
Ansprechpartner: Professor Dr. Karl-Michael Weitzel, Tel.: 06421 28-22360 / 61

Johannes Scholten | idw
Weitere Informationen:
http://www.uni-marburg.de/fb15/ag-weitzel/
http://dx.doi.org/10.1063/1.2898092

Weitere Berichte zu: Attosekunde Elektron Femtosekunde Laserpuls

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Perspektiven durch gespiegelte Systeme
05.12.2016 | Friedrich-Schiller-Universität Jena

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten