Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schneller als schnell: Physikochemiker entfernen Elektronen gezielt aus chemischen Bindungen

04.04.2008
Marburger Wissenschaftler haben einen ungewöhnlichen Weg gefunden, um chemische Bindungen kontrolliert aufzubrechen: Die Physikochemiker um Professor Dr. Karl-Michael Weitzel verwenden aufeinander folgende Laserpulse, um die Elektronen zwischen zwei Atomkernen auf eine Seite zu verschieben, so dass die Bindung zerfällt.
Durch den zeitlichen Abstand der beiden Laserpulse ist präzise determiniert, welche Reaktionsprodukte bei dem Experiment überwiegend entstehen.

Was macht eine chemische Bindung aus und wie kann man sie kontrollieren?

Auf diese Frage, die Chemiker und Physiker seit mehr als hundert Jahren beschäftigt, haben Weitzel und seine Kollegen jetzt eine verblüffende Antwort gegeben. Wie man bereits in der Schule lernt, hat chemische Bindung etwas damit zu tun, dass sich Elektronen zwischen zwei oder mehreren atomaren Kernen aufhalten - von diesen sozusagen gemeinsam genutzt werden.

"Wenn Elektronen das Bestehen einer chemischen Bindung konstituieren, dann bedeutet die Abwesenheit von Elektronen zwischen zwei Kernen den Bruch dieser Bindung", erklärt Weitzel den Grundgedanken des Experiments. Doch selbst wenn Elektronen für einen kurzen Moment aus dem Bereich zwischen zwei Kernen herausgelenkt werden, kommen sie normalerweise so schnell wieder zurück, dass die Kerne nur eine gemittelte Bewegung der Elektronen erkennen.

Der Schlüssel zur Kontrolle chemischer Prozesse mittels Kontrolle der Elektronen liegt also darin, diese nicht nur kurzzeitig aus einer chemischen Bindung herauszunehmen, sondern sie auch noch am Zurückkommen zu hindern. Kein Wunder, dass dazu ein extrem schnelles Experiment erforderlich ist - "möglicherweise das schnellste, das je in Marburg durchgeführt wurde", merkt Weitzel an. Wie sich herausstellte, genügen unvorstellbar kleine Zeitunterschiede von 1.35 Femtosekunden, um vorwiegend die eine oder die andere chemische Bindung in einem Molekül zu brechen.

Die Wissenschaftler haben ihren Versuch mit der Verbindung ortho-Xylol durchgeführt (chemische Formel: C8H10). Die Moleküle dieses Gases wurden mit zwei sehr kurzen Laserpulsen optisch angeregt, die jeweils nur 40 Femtosekunden dauerten. Diese beiden Lichtpulse erfolgten in so kurzem zeitlichem Abstand, dass sie überlappten, wodurch es zu Interferenzen kam; darunter versteht man das gegenseitige Aufschaukeln oder die Auslöschung der einander überlagernden Schwingungen.

Weitzel und seine Kollegen variierten die Zeitverzögerung zwischen den beiden Laserpulsen in kleinsten Schritten von 300 Attosekunden, indem sie einen der beiden Strahlen über einen Umweg von wenigen Nanometern führten. Eine Attosekunde entspricht 10-18 Sekunden - zur Veranschaulichung: Licht benötigt etwas mehr als eine Sekunde für die Strecke von der Erde bis zum Mond, das sind fast 400.000 Kilometer. In 300 Attosekunden legt Licht ungefähr 100 Nanometer zurück.

Je nach gewählter Verzögerung zerfielen die ortho-Xylol-Moleküle in unterschiedliche Bruchstücke: Bei einem Abstand von 70 Femtosekunden erreichte die Bildung von CH3+-Ionen ein Maximum und die Bildung von C+ ein Minimum. Sobald sich der Abstand um nur 1.35 Femtosekunden vergrößerte, war es genau umgekehrt. Über die Variation der Verzögerung in diesen unglaublich kleinen Abständen ist also die Kontrolle der Ausbeute konkurrierender chemischer Prozesse möglich.

Dieses neue Phänomen kann in unterschiedlichen Bildern veranschaulicht werden. Die Wissenschaftler erklären ihre Ergebnisse dadurch, dass die Elektronen durch die Interferenzen der ultrakurzen Lichtpulse in synchrone Schwingungen versetzt werden. Dadurch befinden sie sich je nach Verzögerungszeit außerhalb der Reichweite eines der beteiligten Kerne, wodurch eine bestimmte chemische Bindung gebrochen wird - nämlich jeweils dort, wo die Elektronen gerade nicht sind. Die Ergebnisse erschienen am vergangenen Freitag im renommierten Fachjournal "Journal of Chemical Physics".

Originalveröffentlichung:
H.G. Breunig, G. Urbasch, K.-M. Weitzel: Phase control of molecular fragmentation with a pair of femtosecond-laser pulses, J. Chem. Phys. 128 (2008), 121101 (28.März, 2008), http://dx.doi.org/10.1063/1.2898092
Weitere Informationen:
Ansprechpartner: Professor Dr. Karl-Michael Weitzel, Tel.: 06421 28-22360 / 61

Johannes Scholten | idw
Weitere Informationen:
http://www.uni-marburg.de/fb15/ag-weitzel/
http://dx.doi.org/10.1063/1.2898092

Weitere Berichte zu: Attosekunde Elektron Femtosekunde Laserpuls

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die Evolutionsgeschichte der Wespen, Bienen und Ameisen erstmals entschlüsselt

23.03.2017 | Biowissenschaften Chemie

Neurone am Rande der Katastrophe: Wie das Gehirn durch kritische Zustände effizient arbeitet

23.03.2017 | Seminare Workshops

Müll in den Weltmeeren überall präsent: 1220 Arten betroffen

23.03.2017 | Ökologie Umwelt- Naturschutz