Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kleine Luftblasen mit großer Wirkung

11.03.2008
Wissenschaftler schlagen einen neuen Mechanismus zur Regulation des Ionenstroms durch Membrankanäle vor

Im "Nachrichtenwesen" eines Organismus spielen Ionenkanäle eine wichtige Rolle: Eingelagert in die Zellmembran bilden diese Proteine winzige Poren, durch die kleine geladene Teilchen wie Kalium- oder Natriumionen vom Zellinneren nach außen gelangen können und umgekehrt. Sie vermitteln auf diese Weise u.a. die elektrische Aktivität von Nerven- und Muskelzellen.


Wenn das Gate offen ist (li.), sind hinreichend Wassermoleküle vorhanden, um die Ionen zu umhüllen, die durch den Kanal diffundieren wollen. Wird das Gate also geschlossen (re.), so werden die Wassermoleküle - aufgrund der Abstoßung durch die Kanalinnenwand - quasi verdrängt; es bildet sich ein Gasbläschen, das für die Ionen wie eine Barriere wirkt. Bild: Max-Planck-Gesellschaft

Der Ausfall von Ionenkanälen kann schwerwiegende gesundheitliche Folgen haben. Deshalb ist ein Verständnis ihrer Struktur und Funktion von so großer Bedeutung. Wissenschaftler vom Max-Planck-Institut für Metallforschung in Stuttgart und ihre Kollegen von der Rush Medical School in Chicago sowie der Miller School of Medicine an der Universität in Miami haben nun erstmals einen physikalischen Mechanismus identifiziert, der für das Öffnen und Schließen von Ionenkanälen verantwortlich sein kann.

Wenn Sie zum Frühstück eine Tasse Tee oder Kaffee trinken und ihre Tasse anheben und zum Mund bewegen, dann verarbeitet ihr Gehirn zum einen Informationen über Temperatur und Gewicht der Tasse, zum anderen über die Position ihrer Hand. Und daraus resultieren entsprechende Befehle an die Muskeln ihres Arms, um die Bewegung der Tasse zum Mund zu koordinieren. Diese Informationen zwischen Hand und Gehirn werden entlang von Nervenbahnen ausgetauscht. Auch wenn Sie diese Bewegung alltäglich ausführen und ihr keine weitere Aufmerksamkeit schenken, so spielen sich doch auf der mikroskopischen Skala eine Menge atemberaubender Dingen ab, um dies zu ermöglichen.

... mehr zu:
»Ion »Ionenkanal »Wassermolekül

Die Information entlang der Nervenbahnen breitet sich in Form eines sogenannten Aktionspotenzials aus. Das Aktionspotenzial stellt eine Veränderung der elektrischen Spannung über der Zellmembran dar, die aus dem Einstrom von Natriumionen in die Zelle und einem darauffolgenden Ausstrom von Kaliumionen aus der Zelle resultiert. Die Zellmembran an sich ist für Ionen undurchlässig. Damit Natrium- und Kaliumionen durch die Zellmembran "schlüpfen" können, stellt die Natur spezielle Proteine, sogenannte Ionenkanäle, zur Verfügung. Diese Kanäle sind mikroskopisch kleine Poren in der Membran, die je nach molekularer Bauweise nur für bestimmte Ionen durchlässig sind, und zum Beispiel Natrium- von Kaliumionen unterscheiden können. Die engste Stelle - hier hat der untersuchte Ionenkanal nur einen Durchmesser von etwa drei Ångström (1 Å = 10-7 mm) - fungiert dabei als Selektivitätsfilter.

Der an den Selektivitätsfilter anschließende Teil der Pore - von den Wissenschaftlern als "Gate" bezeichnet - ist mit einem Durchmesser von 12 Ångström schon deutlich weiter. Als Reaktion auf eine Änderung der Membranspannung können Ionenkanäle den Durchmesser ihres "Gates" vergrößern oder verkleinern. Diese Konformationsänderung reicht aber nicht notwendigerweise aus, um den Ionenstrom zu stoppen. Ein wichtiges Detail dabei ist, dass das "Gate" typischerweise leicht hydrophob, also wasserabweisend ist. Wenn das "Gate" weit genug ist, spielt die Wechselwirkung zwischen Wassermolekülen und dem Protein eine untergeordnete Rolle, weil im Mittel jedes Wassermolekül von mehreren Wassermolekülen umgeben ist.

Wird das Gate aber enger, dann gewinnt die Wechselwirkung zwischen Wassermolekülen und dem Protein an Bedeutung. Wird schließlich ein bestimmter Wert für den Durchmesser des "Gates" unterschritten, dann ist es - aufgrund der abstoßenden Wirkung zwischen Wassermolekülen und Protein - sehr unwahrscheinlich, noch Wasser im "Gate" zu finden. Es bildet sich hier stattdessen ein kleines Gasbläschen, das große Wirkung zeigt: Ionen, die sich am liebsten in Wasser befinden, treffen auf eine schier undurchdringbare Barriere. Damit unterbricht das Gasbläschen den Ionenstrom durch den Kanal und schließt das "Gate". "Tatsächlich können eine Vielzahl von experimentellen Beobachtungen zum Öffnen und Schließen von Ionenkanälen mit diesem Modell des Bubble Gating verstanden werden" erklärt Roland Roth. In der Physik ist dieser Effekt von stark eingeschränkten Flüssigkeiten seit langem bekannt - nun kann er helfen, ein biologisches Phänomen zu verstehen.

Interessanterweise bietet das Bubble Gating-Modell auch eine Möglichkeit, die betäubende Wirkung eines Edelgases wie Xenon zu erklären. Wird Xenon in der richtigen Konzentration in die Atemluft gemischt, dann stellt es ein praktisch perfektes Narkotikum dar. "Da Xenon chemisch sehr träge ist, scheiden Mechanismen, die auf chemisch spezifische Bindungen aufbauen, sehr wahrscheinlich als Erklärung aus", sagt der junge Biophysiker. "Aber Rechnungen im Bubble Gating-Modell haben gezeigt, dass Xenon schon bei geringen Konzentrationen die Wahrscheinlichkeit der Bläschenbildung erhöht, auch wenn das "Gate" noch relative weit ist."

Im Rahmen des vorgestellten Modells können eine Reihe bekannter Phänome zusammengefasst und theoretisch untersucht werden. Damit ermöglicht das Modell nicht nur, die faszinierenden Prozesse an Nervenzellen neu zu beleuchten, die ablaufen, wenn Sie ihre Tee- oder Kaffeetasse zum Mund führen, sondern stellt auch neue Möglichkeiten zur Verfügung, um Narkose- und Arzneimittelwirkungen zu untersuchen.

Originalveröffentlichung:

Roland Roth, Dirk Gillespie, Wolfgang Nonner, Bob Eisenberg
Bubbles, Gating, and Anesthetics in Ion Channels
Biophys. Journal BioFAST, 30. Januar 2008

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Ion Ionenkanal Wassermolekül

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher entwickeln zweidimensionalen Kristall mit hoher Leitfähigkeit
21.08.2017 | Universität Leipzig

nachricht Topologische Quantenzustände einfach aufspüren
21.08.2017 | Universität Innsbruck

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Studie für Patienten mit Prostatakrebs: Einteilung in genomische Gruppen soll Therapie präzisieren

21.08.2017 | Interdisziplinäre Forschung

Forscher entwickeln zweidimensionalen Kristall mit hoher Leitfähigkeit

21.08.2017 | Physik Astronomie

Ein neuer Indikator für marine Ökosystem-Veränderungen - der Dia/Dino-Index

21.08.2017 | Ökologie Umwelt- Naturschutz