Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kleine Luftblasen mit großer Wirkung

11.03.2008
Wissenschaftler schlagen einen neuen Mechanismus zur Regulation des Ionenstroms durch Membrankanäle vor

Im "Nachrichtenwesen" eines Organismus spielen Ionenkanäle eine wichtige Rolle: Eingelagert in die Zellmembran bilden diese Proteine winzige Poren, durch die kleine geladene Teilchen wie Kalium- oder Natriumionen vom Zellinneren nach außen gelangen können und umgekehrt. Sie vermitteln auf diese Weise u.a. die elektrische Aktivität von Nerven- und Muskelzellen.


Wenn das Gate offen ist (li.), sind hinreichend Wassermoleküle vorhanden, um die Ionen zu umhüllen, die durch den Kanal diffundieren wollen. Wird das Gate also geschlossen (re.), so werden die Wassermoleküle - aufgrund der Abstoßung durch die Kanalinnenwand - quasi verdrängt; es bildet sich ein Gasbläschen, das für die Ionen wie eine Barriere wirkt. Bild: Max-Planck-Gesellschaft

Der Ausfall von Ionenkanälen kann schwerwiegende gesundheitliche Folgen haben. Deshalb ist ein Verständnis ihrer Struktur und Funktion von so großer Bedeutung. Wissenschaftler vom Max-Planck-Institut für Metallforschung in Stuttgart und ihre Kollegen von der Rush Medical School in Chicago sowie der Miller School of Medicine an der Universität in Miami haben nun erstmals einen physikalischen Mechanismus identifiziert, der für das Öffnen und Schließen von Ionenkanälen verantwortlich sein kann.

Wenn Sie zum Frühstück eine Tasse Tee oder Kaffee trinken und ihre Tasse anheben und zum Mund bewegen, dann verarbeitet ihr Gehirn zum einen Informationen über Temperatur und Gewicht der Tasse, zum anderen über die Position ihrer Hand. Und daraus resultieren entsprechende Befehle an die Muskeln ihres Arms, um die Bewegung der Tasse zum Mund zu koordinieren. Diese Informationen zwischen Hand und Gehirn werden entlang von Nervenbahnen ausgetauscht. Auch wenn Sie diese Bewegung alltäglich ausführen und ihr keine weitere Aufmerksamkeit schenken, so spielen sich doch auf der mikroskopischen Skala eine Menge atemberaubender Dingen ab, um dies zu ermöglichen.

... mehr zu:
»Ion »Ionenkanal »Wassermolekül

Die Information entlang der Nervenbahnen breitet sich in Form eines sogenannten Aktionspotenzials aus. Das Aktionspotenzial stellt eine Veränderung der elektrischen Spannung über der Zellmembran dar, die aus dem Einstrom von Natriumionen in die Zelle und einem darauffolgenden Ausstrom von Kaliumionen aus der Zelle resultiert. Die Zellmembran an sich ist für Ionen undurchlässig. Damit Natrium- und Kaliumionen durch die Zellmembran "schlüpfen" können, stellt die Natur spezielle Proteine, sogenannte Ionenkanäle, zur Verfügung. Diese Kanäle sind mikroskopisch kleine Poren in der Membran, die je nach molekularer Bauweise nur für bestimmte Ionen durchlässig sind, und zum Beispiel Natrium- von Kaliumionen unterscheiden können. Die engste Stelle - hier hat der untersuchte Ionenkanal nur einen Durchmesser von etwa drei Ångström (1 Å = 10-7 mm) - fungiert dabei als Selektivitätsfilter.

Der an den Selektivitätsfilter anschließende Teil der Pore - von den Wissenschaftlern als "Gate" bezeichnet - ist mit einem Durchmesser von 12 Ångström schon deutlich weiter. Als Reaktion auf eine Änderung der Membranspannung können Ionenkanäle den Durchmesser ihres "Gates" vergrößern oder verkleinern. Diese Konformationsänderung reicht aber nicht notwendigerweise aus, um den Ionenstrom zu stoppen. Ein wichtiges Detail dabei ist, dass das "Gate" typischerweise leicht hydrophob, also wasserabweisend ist. Wenn das "Gate" weit genug ist, spielt die Wechselwirkung zwischen Wassermolekülen und dem Protein eine untergeordnete Rolle, weil im Mittel jedes Wassermolekül von mehreren Wassermolekülen umgeben ist.

Wird das Gate aber enger, dann gewinnt die Wechselwirkung zwischen Wassermolekülen und dem Protein an Bedeutung. Wird schließlich ein bestimmter Wert für den Durchmesser des "Gates" unterschritten, dann ist es - aufgrund der abstoßenden Wirkung zwischen Wassermolekülen und Protein - sehr unwahrscheinlich, noch Wasser im "Gate" zu finden. Es bildet sich hier stattdessen ein kleines Gasbläschen, das große Wirkung zeigt: Ionen, die sich am liebsten in Wasser befinden, treffen auf eine schier undurchdringbare Barriere. Damit unterbricht das Gasbläschen den Ionenstrom durch den Kanal und schließt das "Gate". "Tatsächlich können eine Vielzahl von experimentellen Beobachtungen zum Öffnen und Schließen von Ionenkanälen mit diesem Modell des Bubble Gating verstanden werden" erklärt Roland Roth. In der Physik ist dieser Effekt von stark eingeschränkten Flüssigkeiten seit langem bekannt - nun kann er helfen, ein biologisches Phänomen zu verstehen.

Interessanterweise bietet das Bubble Gating-Modell auch eine Möglichkeit, die betäubende Wirkung eines Edelgases wie Xenon zu erklären. Wird Xenon in der richtigen Konzentration in die Atemluft gemischt, dann stellt es ein praktisch perfektes Narkotikum dar. "Da Xenon chemisch sehr träge ist, scheiden Mechanismen, die auf chemisch spezifische Bindungen aufbauen, sehr wahrscheinlich als Erklärung aus", sagt der junge Biophysiker. "Aber Rechnungen im Bubble Gating-Modell haben gezeigt, dass Xenon schon bei geringen Konzentrationen die Wahrscheinlichkeit der Bläschenbildung erhöht, auch wenn das "Gate" noch relative weit ist."

Im Rahmen des vorgestellten Modells können eine Reihe bekannter Phänome zusammengefasst und theoretisch untersucht werden. Damit ermöglicht das Modell nicht nur, die faszinierenden Prozesse an Nervenzellen neu zu beleuchten, die ablaufen, wenn Sie ihre Tee- oder Kaffeetasse zum Mund führen, sondern stellt auch neue Möglichkeiten zur Verfügung, um Narkose- und Arzneimittelwirkungen zu untersuchen.

Originalveröffentlichung:

Roland Roth, Dirk Gillespie, Wolfgang Nonner, Bob Eisenberg
Bubbles, Gating, and Anesthetics in Ion Channels
Biophys. Journal BioFAST, 30. Januar 2008

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Ion Ionenkanal Wassermolekül

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Moleküle brillant beleuchtet
23.04.2018 | Max-Planck-Institut für Quantenoptik

nachricht Wie zerfallen kleinste Bleiteilchen?
23.04.2018 | Ernst-Moritz-Arndt-Universität Greifswald

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Metalle verbinden ohne Schweißen

Kieler Prototyp für neue Verbindungstechnik wird auf Hannover Messe präsentiert

Schweißen ist noch immer die Standardtechnik, um Metalle miteinander zu verbinden. Doch das aufwändige Verfahren unter hohen Temperaturen ist nicht überall...

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Moleküle brillant beleuchtet

23.04.2018 | Physik Astronomie

Sauber und effizient - Fraunhofer ISE präsentiert Wasserstofftechnologien auf Hannover Messe

23.04.2018 | HANNOVER MESSE

Fraunhofer IMWS entwickelt biobasierte Faser-Kunststoff-Verbunde für Leichtbau-Anwendungen

23.04.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics