Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker beobachten kleinste Veränderungen im elektrischen Stromfluss

05.03.2008
Wissenschaftler um Prof. Jörg Schmiedmayer untersuchen den elektrischen Stromfluss mit einer neuen Methode bis hin in den Mikrometer-Bereich - Experimente waren Thema der Dissertation von Dr. Simon Aigner und wurden am Physikalischen Institut der Universität Heidelberg durchgeführt - Veröffentlichung in der jüngsten Ausgabe von "Science"

Traditionellerweise wird elektrischer Strom zur Veranschaulichung oft mit fließendem Wasser verglichen.

Diesen Stromfluss haben nun Wissenschafter um Jörg Schmiedmayer an der TU Wien gemeinsam mit Kollegen von der Universität Heidelberg und der Gruppe von Ron Folman an der Ben-Gurion Universität in Israel mit Hilfe einer neuen Beobachtungsmethode genauest untersucht, bis hin in den Mikrometer-Bereich. Die Untersuchungen mit der so genannten "Magnetfeldmikroskopie mit ultrakalten Atomen" wurden in der jüngsten Ausgabe der Wissenschaftszeitschrift "Science" veröffentlicht.

Mit der erst vor wenigen Jahren in der Gruppe von Jörg Schmiedmayer an der Universität Heidelberg entwickelten Methode messen die Physiker feinste Magnetfelder und deren Veränderungen. Als Sensor dient eine Wolke aus Atomen, die bis nahe an den absoluten Nullpunkt, bis hin zum Bose-Einstein-Kondensat, abgekühlt wird. Die Wolke wird in einer Magnetfalle über einer Probe positioniert. Kleinste Variationen des Magnetfeldes innerhalb der Probe machen sich in der kalten Atomwolke als unterschiedliche Dichten bemerkbar, diese wiederum können mittels eines Laserstrahls optisch sichtbar gemacht werden. Aus diesen Veränderungen der Dichte der Atomwolke kann man auf kleinste Änderungen im Stromfluss zurückschließen.

Im konkreten Experiment setzten die Forscher eine Wolke aus ultrakalten (T~100nK) Rubidiumatomen ein, die über einem stromdurchflossenen hauchdünnen Goldfilm positioniert wurde. Durch die Beobachtung der Magnetfelder mit einer räumlichen Auflösung von drei Mikrometern konnten die Physiker auf den Fluss von elektrischem Strom im Goldfilm schließen und das flächig.

Die Methode ist derart genau, dass lokale Änderungen der Stromflussrichtung von 1/1000 Grad vermessen werden können (das entspricht einer Ablenkung von wenigen Millimetern auf 100 Meter). Dazu benötigt man eine Magnetfeldkarte, bei der selbst Unterschiede im Bereich von Nano-Tesla oder weniger angezeigt werden. Zum Vergleich: Ein Nano-Tesla sind 1/100000 (ein Hunderttausendstel) des Erdmagnetfeldes.

In der am 29. Februar 2008 in 'Science' erschienenen Arbeit haben die Wissenschafter dieses Magnetfeldmikroskop zur Untersuchung von Stromfluss in dünnen Goldschichten angewendet. Die Beobachtung des Stromflusses im Mikrometer-Bereich zeigte, dass dieser nicht gleichförmig durch den Goldfilm zieht. Wie bei einem flachen Bach, in dem der Wasserfluss durch Steine und sonstige Hindernisse gestört wird, ist der Stromfluss zahlreichen und zufällig verteilten Störungen unterworfen, welche auf Defekte und Widerstände in der Folie zurückzuführen sind. Die besondere Empfindlichkeit und die gute Ortsauflösung des Magnetfeldmikroskops ermöglichte nun einen neuartigen Einblick in diesen Stromtransport in metallischen Leitern mit einigen überraschenden Ergebnissen, die mit konventionellen Methoden der Materialwissenschaften nicht zugänglich waren.

(1) Obwohl der Stromfluss im Leiter durch Diffusion der Elektronen mit einer freien Weglänge von 40 nm bestimmt ist, findet man langreichweitige +/- 45 Grad orientierte Muster, die bis über 100 µm Distanz verfolgt werden können. Diese Muster spiegeln den fundamentalen Prozess der Elektronenstreuung an einem Defekt wider.

(2) Der Strom fließt in den dünnsten Goldschichten am geradesten, viel gerader als man naiv erwarten würde. Durch eine detaillierte Analyse kann man zeigen, dass verschiedene Komponenten zu den Stromfluss-Richtungsänderungen beitragen und sich in den untersuchten Drähten unterschiedlich verhalten. Diese Ergebnisse sind zum Teil im Widerspruch zu dem, was man aus den 'traditionellen' Untersuchungen erwarten würde.

Magnetfeldmikroskopie mit ultrakalten Atomen ist ein sehr schönes Beispiel dafür, dass Erkenntnisse der quantenphysikalischen Grundlagenforschung oft auch in sehr angewandten Wissenschaftsgebieten wie der Materialwissenschaft neue und überraschende Einblicke geben können. Die neuen Experimente erlauben erstmals einen sehr feinen Blick auf den Stromfluss in verschiedenen Materialien - und das über große Flächen mit hoher räumlicher Auflösung. Die Wissenschafter erwarten sich durch die Anwendung der Magnetfeldmikroskopie viele neue Erkenntnisse sowohl für die Grundlagenforschung als auch für Mikro- und Nano-Elektronik, oder in den Materialwissenschaften.

Long-Range Order in Electronic Transport through Disordered Metal Films
S. Aigner, L. Della Pietra, Y. Japha, O. Entin-Wohlman, T. David, R. Salem, R. Folman, J. Schmiedmayer
Science 319 1226 (2008)
Andere Literatur zum Mikroskop
S. Wildermuth et al., Nature, 435, 440 (2005).
S. Wildermuth et al., Appl. Phys. Lett., 88, 264103 (2006).
Übersichtsartikel zu Atom Chips:
R. Folman et al., Advances of Atomic and Molecular and Optical Physics,
48, 263 (2002).
Kontakt:
Prof. Jörg Schmiedmayer
TU Wien
Tel. +43-1-58801 14101
schmiedmayer@atomchip.org
Allgemeine Rückfragen von Journalisten auch an:
Irene Thewalt
presse@rektorat.uni-heidelberg.de

Dr. Michael Schwarz | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Harmonien in der Optoelektronik
21.07.2017 | Georg-August-Universität Göttingen

nachricht Von photonischen Nanoantennen zu besseren Spielekonsolen
20.07.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten