Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker beobachten kleinste Veränderungen im elektrischen Stromfluss

05.03.2008
Wissenschaftler um Prof. Jörg Schmiedmayer untersuchen den elektrischen Stromfluss mit einer neuen Methode bis hin in den Mikrometer-Bereich - Experimente waren Thema der Dissertation von Dr. Simon Aigner und wurden am Physikalischen Institut der Universität Heidelberg durchgeführt - Veröffentlichung in der jüngsten Ausgabe von "Science"

Traditionellerweise wird elektrischer Strom zur Veranschaulichung oft mit fließendem Wasser verglichen.

Diesen Stromfluss haben nun Wissenschafter um Jörg Schmiedmayer an der TU Wien gemeinsam mit Kollegen von der Universität Heidelberg und der Gruppe von Ron Folman an der Ben-Gurion Universität in Israel mit Hilfe einer neuen Beobachtungsmethode genauest untersucht, bis hin in den Mikrometer-Bereich. Die Untersuchungen mit der so genannten "Magnetfeldmikroskopie mit ultrakalten Atomen" wurden in der jüngsten Ausgabe der Wissenschaftszeitschrift "Science" veröffentlicht.

Mit der erst vor wenigen Jahren in der Gruppe von Jörg Schmiedmayer an der Universität Heidelberg entwickelten Methode messen die Physiker feinste Magnetfelder und deren Veränderungen. Als Sensor dient eine Wolke aus Atomen, die bis nahe an den absoluten Nullpunkt, bis hin zum Bose-Einstein-Kondensat, abgekühlt wird. Die Wolke wird in einer Magnetfalle über einer Probe positioniert. Kleinste Variationen des Magnetfeldes innerhalb der Probe machen sich in der kalten Atomwolke als unterschiedliche Dichten bemerkbar, diese wiederum können mittels eines Laserstrahls optisch sichtbar gemacht werden. Aus diesen Veränderungen der Dichte der Atomwolke kann man auf kleinste Änderungen im Stromfluss zurückschließen.

Im konkreten Experiment setzten die Forscher eine Wolke aus ultrakalten (T~100nK) Rubidiumatomen ein, die über einem stromdurchflossenen hauchdünnen Goldfilm positioniert wurde. Durch die Beobachtung der Magnetfelder mit einer räumlichen Auflösung von drei Mikrometern konnten die Physiker auf den Fluss von elektrischem Strom im Goldfilm schließen und das flächig.

Die Methode ist derart genau, dass lokale Änderungen der Stromflussrichtung von 1/1000 Grad vermessen werden können (das entspricht einer Ablenkung von wenigen Millimetern auf 100 Meter). Dazu benötigt man eine Magnetfeldkarte, bei der selbst Unterschiede im Bereich von Nano-Tesla oder weniger angezeigt werden. Zum Vergleich: Ein Nano-Tesla sind 1/100000 (ein Hunderttausendstel) des Erdmagnetfeldes.

In der am 29. Februar 2008 in 'Science' erschienenen Arbeit haben die Wissenschafter dieses Magnetfeldmikroskop zur Untersuchung von Stromfluss in dünnen Goldschichten angewendet. Die Beobachtung des Stromflusses im Mikrometer-Bereich zeigte, dass dieser nicht gleichförmig durch den Goldfilm zieht. Wie bei einem flachen Bach, in dem der Wasserfluss durch Steine und sonstige Hindernisse gestört wird, ist der Stromfluss zahlreichen und zufällig verteilten Störungen unterworfen, welche auf Defekte und Widerstände in der Folie zurückzuführen sind. Die besondere Empfindlichkeit und die gute Ortsauflösung des Magnetfeldmikroskops ermöglichte nun einen neuartigen Einblick in diesen Stromtransport in metallischen Leitern mit einigen überraschenden Ergebnissen, die mit konventionellen Methoden der Materialwissenschaften nicht zugänglich waren.

(1) Obwohl der Stromfluss im Leiter durch Diffusion der Elektronen mit einer freien Weglänge von 40 nm bestimmt ist, findet man langreichweitige +/- 45 Grad orientierte Muster, die bis über 100 µm Distanz verfolgt werden können. Diese Muster spiegeln den fundamentalen Prozess der Elektronenstreuung an einem Defekt wider.

(2) Der Strom fließt in den dünnsten Goldschichten am geradesten, viel gerader als man naiv erwarten würde. Durch eine detaillierte Analyse kann man zeigen, dass verschiedene Komponenten zu den Stromfluss-Richtungsänderungen beitragen und sich in den untersuchten Drähten unterschiedlich verhalten. Diese Ergebnisse sind zum Teil im Widerspruch zu dem, was man aus den 'traditionellen' Untersuchungen erwarten würde.

Magnetfeldmikroskopie mit ultrakalten Atomen ist ein sehr schönes Beispiel dafür, dass Erkenntnisse der quantenphysikalischen Grundlagenforschung oft auch in sehr angewandten Wissenschaftsgebieten wie der Materialwissenschaft neue und überraschende Einblicke geben können. Die neuen Experimente erlauben erstmals einen sehr feinen Blick auf den Stromfluss in verschiedenen Materialien - und das über große Flächen mit hoher räumlicher Auflösung. Die Wissenschafter erwarten sich durch die Anwendung der Magnetfeldmikroskopie viele neue Erkenntnisse sowohl für die Grundlagenforschung als auch für Mikro- und Nano-Elektronik, oder in den Materialwissenschaften.

Long-Range Order in Electronic Transport through Disordered Metal Films
S. Aigner, L. Della Pietra, Y. Japha, O. Entin-Wohlman, T. David, R. Salem, R. Folman, J. Schmiedmayer
Science 319 1226 (2008)
Andere Literatur zum Mikroskop
S. Wildermuth et al., Nature, 435, 440 (2005).
S. Wildermuth et al., Appl. Phys. Lett., 88, 264103 (2006).
Übersichtsartikel zu Atom Chips:
R. Folman et al., Advances of Atomic and Molecular and Optical Physics,
48, 263 (2002).
Kontakt:
Prof. Jörg Schmiedmayer
TU Wien
Tel. +43-1-58801 14101
schmiedmayer@atomchip.org
Allgemeine Rückfragen von Journalisten auch an:
Irene Thewalt
presse@rektorat.uni-heidelberg.de

Dr. Michael Schwarz | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eine Extra-Sekunde zum neuen Jahr
08.12.2016 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Heimcomputer entdecken rekordverdächtiges Pulsar-Neutronenstern-System
08.12.2016 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops