Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spurensuche im kosmischen Netz

31.01.2008
Astronomen ergründen, warum die Welt nicht zusammenhält

Das Universum dehnt sich aus - und wird dabei immer schneller. Über die Ursache dieser beschleunigten Expansion rätseln die Forscher seit deren Entdeckung vor zehn Jahren. Treibt eine geheimnisvolle Dunkle Energie das All auseinander? Oder stimmt gar die Gravitationstheorie nicht? Ein internationales Team hat jetzt die Verteilung und die Eigenbewegungen Tausender weit entfernter Galaxien gemessen. Diese Methode entpuppt sich als Prüfstein für die Modelle der kosmischen Expansion (Nature, 31. Januar 2008).


Weltall in Bewegung: Diese Computersimulation zeigt, wie Galaxien zu einem massiven Superhaufen verklumpen. Die gelben Nadeln sind Geschwindigkeitsvektoren und verdeutlichen die Zunahme der Schwerkraft, die von der feinen Balance von Dunkler Materie, Dunkler Energie und der Expansion des Universums abhängt. Bild: MPI für Astrophysik/Klaus Dolag

Die Astronomen unter Leitung von Luigi Guzzo, Gastwissenschaftler an den Max-Planck-Instituten für extraterrestrische Physik und für Astrophysik in Garching, haben Milchstraßensysteme in einem Raum von 25 Millionen Kubiklichtjahren unter die Lupe genommen und dabei mehr als 13.000 Spektren von Galaxien gewonnen. Weil das Licht eine bestimmte Zeit benötigt, um eine kosmische Distanz zu durchlaufen, nehmen wir ferne astronomische Objekte so wahr, wie sie früher ausgesehen haben. Das Alter der untersuchten, schwach glimmenden und sehr weit entfernten Galaxien beträgt rund sieben Milliarden Jahre. Das Weltall als Ganzes ist etwa doppelt so alt.

Bei solch gewaltigen Abständen von mehreren Milliarden Lichtjahren macht sich die sogenannte kosmologische Rotverschiebung deutlich bemerkbar: Seit dem Urknall vor knapp 14 Milliarden Jahren dehnt sich der Raum aus - die Galaxien treiben darin auseinander wie die Rosinen in einem aufgehenden Hefeteig. Dabei werden die Lichtwellen "gedehnt" und erscheinen langwellig, also rot. Diese Rotverschiebung zeigt sich im Galaxienspektrum und gibt einen Hinweis auf die Entfernung, wobei gilt: je größer die Rotverschiebung, desto größer die Entfernung.

... mehr zu:
»Expansion »Galaxie »Schwerkraft

In der Natur weisen die Galaxien aber zusätzlich zur allgemeinen Fluchtbewegung mehr oder weniger starke Eigenbewegungen auf. Diese rühren von Materiekonzentrationen her, deren Schwerkraft die einzelnen Sternsysteme beeinflussen. Misst man die Bewegungen vieler Galaxien in einem großen Raumwürfel, lässt sich daraus eine dreidimensionale Karte des Universums erstellen.

Eine derartige Karte zeigt die Verteilung der Galaxien und ihre statistischen Eigenbewegungen zu einem bestimmten Zeitpunkt in der Vergangenheit und gibt auf diese Weise Aufschluss über den Stand der Strukturbildung. Denn seit dem Urknall haben sich aus winzigen Dichtefluktuationen bis heute gigantische Netze aus Galaxienhaufen entwickelt. Am Max-Planck-Institut für Astrophysik simulieren Wissenschaftler am Computer die Evolution des Universums - die wiederum eng mit der rätselhaften Kraft zusammenhängt, die das All auseinandertreibt.

Hier setzt die Arbeit von Luigi Guzzo und seinen Kollegen an. Mit dem 8,2-Meter-Spiegelfernohr "Melipal" des Very Large Telescope der Europäischen Südsternwarte in Chile bestimmten die Forscher aus den Spektren die Bewegungen der Galaxien und gewannen damit eine Momentaufnahme des etwa sieben Milliarden Jahre alten Universums. Aus einem Vergleich mit dem Babybild des Alls - es zeigt die Dichtefluktuationen 400.000 Jahre nach dem Urknall - sowie dem gegenwärtigen Zustand lassen sich die Rolle der Dunklen Energie sowie deren Wesen und Stärke herauslesen.

In der Tat hatten Forscher im Jahr 1998 entdeckt, dass die Expansion des Universums heute schneller verläuft als in der Vergangenheit. Dieses Ergebnis kam überraschend, hatte man bis dahin doch geglaubt, dass die Schwerkraft die Expansion des Universums abbremsen müsste. Was steckte dahinter? Mindestens zwei mögliche Erklärungen gelten bis heute als denkbar.

Bei der Dunklen Energie handelt es sich um eine Verallgemeinerung der von Albert Einstein eingeführten, später aber verworfenen Kosmologischen Konstante. Sie macht ungefähr 75 Prozent der gesamten Energiedichte im Universum aus und lässt sich nicht direkt nachweisen, sondern nur indirekt aus der Expansion des Weltalls und der Bildung der großräumigen Strukturen ableiten. Eine andere Alternative: Die Gleichung der Allgemeinen Relativität und damit die Theorie der Schwerkraft müssen modifiziert werden.

Die Messungen der Wissenschaftler um Luigi Guzzo stimmen mit dem Modell der Kosmologischen Konstante überein. Allerdings gibt es noch große Unsicherheiten im Ergebnis. "Wenn wir unsere Beobachtungen auf ein zehnfach größeres Raumvolumen ausdehnen könnten, sollten wir aber ziemlich sicher die Frage beantworten, ob die Ursache der beschleunigten Ausdehnung des Universums tatsächlich die Dunkle Energie ist oder eine Form von Schwerkraft, die von unserem bisherigen Verständnis der Gravitation abweicht", sagt Guzzo.

Originalveröffentlichung:

Luigi Guzzo et al.
A test of the nature of cosmic acceleration using galaxy redshift distortions
Nature, 31. Januar 2008

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Expansion Galaxie Schwerkraft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Atome rennen sehen - Phasenübergang live beobachtet
30.03.2017 | Universität Duisburg-Essen

nachricht Flipper auf atomarem Niveau
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Herzerkrankungen: Wenn weniger mehr ist

30.03.2017 | Medizin Gesundheit

Flipper auf atomarem Niveau

30.03.2017 | Physik Astronomie

Europaweite Studie zu „Smart Engineering“

30.03.2017 | Studien Analysen