Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nobelpreis-Technik auf einem Chip

20.12.2007
Die 1998 am Max-Planck-Institut für Quantenoptik (MPQ) in Garching erfundene Frequenzkammtechnik hat sowohl die Grundlagenforschung als auch die Laserentwicklung und deren Anwendungen so stark beeinflusst und vorangetrieben, dass ihr Erfinder Theodor Hänsch (MPQ) dafür im Jahr 2005 gemeinsam mit seinem US-Kollegen John Hall den Nobelpreis für Physik erhielt.

Die hochpräzisen Messgeräte zur Bestimmung optischer Frequenzen sind mittlerweile relativ kompakt und werden kommerziell vertrieben. Ungleich handlicher jedoch ist der nur 75 Mikrometer große Mikroresonator, mit dem jetzt Dr. Tobias Kippenberg und seinen Mitarbeitern im "Laboratory of Photonics" am MPQ die Erzeugung von Frequenzkämmen gelang (Nature, 20. Dezember 07). Frequenzkämme auf einem Mikrochip könnten Techniken der Zeitmessung und der Datenübertragung geradezu revolutionieren.


Monochromatisches Licht, symbolisiert durch die grüne Linie links, wird innerhalb des Mikroresonators in einen Frequenzkamm umgewandelt, dargestellt durch das bunte Strahlenbündel rechts. MPQ

Im Prinzip ist ein Frequenzkamm eine Art Lineal, mit dem sich unbekannte optische (d.h. sehr hohe) Frequenzen von Licht hochpräzise bestimmen lassen. In dem von Hänsch und Hall verfolgten Ansatz beruht seine Erzeugung auf einem Modenkopplungsprozess in Kurzpuls-Lasern. Dabei entsteht Laserlicht, das rund 100 000 sehr dicht benachbarte Spektrallinien enthält, deren Frequenzabstand immer gleich und extrem genau bekannt ist - dies ist der Grund für die Bezeichnung "Kamm". Wenn man diesen Frequenzkamm mit einem anderen Laserstrahl überlagert, dann lässt sich aus der resultierenden Schwebung dessen Frequenz mit bis dato unerreichter Genauigkeit bestimmen. Ein Frequenzkamm dieser Art enthält viele optische Bauelemente und ist daher sehr aufwendig.

Nun ist es der Max-Planck-Nachwuchsgruppe von Tobias Kippenberg - seit 2007 auch "Marie Curie Excellence Grant Team" - in Zusammenarbeit mit Ronald Holzwarth von Menlo Systems (diese Firmenausgründung des MPQ vertreibt die Frequenzkammtechnik inzwischen weltweit) gelungen, einen Frequenzkamm mit Hilfe einer winzigen Mikrostruktur zu erzeugen. Die Wissenschaftler verwenden in ihrem Experiment einen auf einem Silizium-Chip hergestellten torusförmigen Glas-Resonator mit einem Durchmesser von nur 75 Mikrometern, der am Lehrstuhl für Festkörperphysik (Prof. Jörg Kotthaus) der Ludwig-Maximilians-Universität München (LMU) hergestellt wird. Indem sie einen Laserstrahl in einem "Nano-Draht" aus Glas dicht daran vorbeiführen, koppeln sie Licht in diese monolithische Struktur ein.

Solche optischen Resonatoren können Licht relativ lange speichern. Dies kann zu extrem hohen Lichtintensitäten - sprich Photonendichten - führen, bei denen eine Fülle nichtlinearer Effekte auftreten. Und ein solcher nichtlinearer "Kerr-Effekt" ist es, der die Entstehung eines Frequenzkamms ermöglicht: In einem 4-Photonen-Prozess werden zwei Lichtquanten gleicher Energie in zwei Photonen umgewandelt, von denen das eine Lichtquant eine höhere, das andere eine niedrigere als die ursprüngliche Energie hat. Dabei können die neu erzeugten Photonen ihrerseits mit den ursprünglichen Lichtquanten interagieren und dabei wiederum neue Frequenzen erzeugen. Aus dieser Kaskade entsteht ein überraschend breites Spektrum von Frequenzen ganz ohne die Verstärkung durch ein aktives Lasermedium, die bei der herkömmlichen Methode notwendig ist. "Interessanterweise fand sich in der Literatur kein Hinweis darauf, dass Frequenzkämme auf diese Weise erzeugt werken können", konstatiert Pascal Del'Haye, Doktorand am Projekt. "Es handelt sich dabei um einen völlig neuen Entstehungsprozess, auf den wir fast zufällig gestoßen sind", bekräftigt Dr. Tobias Kippenberg.

Das neue Verfahren ist aber nur dann tauglich, wenn der Abstand zwischen allen erzeugten Frequenzen immer exakt gleich ist und auf diese Weise - obschon die Mikroresonatoren selbst kein vollkommen äquidistantes Modenspektrum haben - ein perfekter Kamm erzeugt wird. In langwierigen Präzisionsmessungen verglichen die Doktoranden Pascal Del'Haye und Albert Schließer in Kooperation mit Ronald Holzwarth das Spektrum des monolithisch erzeugten Frequenzkamms mit einem kommerziellen Kamm der Firma Menlo Systems. Dabei zeigten sie, dass die im Mikroresonator erzeugten Frequenzen äquidistant liegen, wobei sie Abweichungen bis zum 10-18ten Bruchteil der Lichtfrequenzen ausschließen konnten.

Der neuartige Frequenzkamm könnte in der Zukunft zur optischen Frequenzbestimmung verwendet werden und damit auch für die Konstruktion von Uhren mit extrem hoher Genauigkeit. Ein weiteres hochinteressantes Anwendungsfeld liegt in der optischen Telekommunikation: Während beim herkömmlichen Frequenzkamm die Linien extrem dicht liegen und recht lichtschwach sind, haben die ca. 130 Spektrallinien des monolithischen Frequenzkamms einen Abstand ungefähr 400 Gigahertz und Leistungen in der Größenordnung von einem Milliwatt (0 dBm). Dies entspricht ziemlich genau den typischen Anforderungen für die "Träger" der Datenkanäle in der faserbasierten optischen Telekommunikation. Während bisher für jeden Frequenzkanal ein eigener Generator mit eigenem Laser erforderlich ist, würde es der neue Ansatz ermöglichen, mit einem einzigen Bauelement eine Vielzahl von Datenkanälen zu definieren.

Noch sind nicht alle Aspekte des Entstehungsprozesses verstanden, und auch an der Technik muss noch gefeilt werden, bevor der Frequenzkamm in der Praxis zum Einsatz kommen kann. Im Hinblick auf das hohe Anwendungspotential haben die Wissenschaftler ihre Entdeckung dennoch bereits weltweit zum Patent angemeldet.

Die aktuell in der Zeitschrift Nature vorgestellte Arbeit entstand im Rahmen des Exzellenz-Clusters "Nanosystems Initiative Munich", dessen Ziel es ist, funktionale Nanostrukturen für Anwendungen in der Medizin und in der Informationsverarbeitung zu entwickeln, zu erforschen und zum Einsatz zu bringen. [O.M.]

Veröffentlichung:
"Optical frequency comb generation from a monolithic microresonator",
P. Del'Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg, Nature, 20. Dezember 2007
Kontakt:
Dr. Tobias Kippenberg
Max-Planck-Institut für Quantenoptik,
Hans-Kopfermann-Straße 1
85748 Garching
Telefon: +49 - 89 / 32905 727
Fax: +49 - 89 / 32905 200
E-Mail: tobias.kippenberg@mpq.mpg.de
Dr. Olivia Meyer-Streng
Presse & Kommunikation
Max-Planck-Institut für Quantenoptik,
Hans-Kopfermann-Straße 1
85748 Garching
Telefon: +49 - 89 / 32905 213
Fax: +49 - 89 / 32905 200
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpq.mpg.de/k-lab/

Weitere Berichte zu: Frequenzkamm Lichtquant MPQ Mikroresonator

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

nachricht NAWI Graz-Forschende vermessen Lichtfelder erstmals in 3D
26.06.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der Krümmung einen Schritt voraus

27.06.2017 | Informationstechnologie

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungsnachrichten

Überschwemmungen genau in den Blick nehmen

27.06.2017 | Informationstechnologie