Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Beobachtungen zeigen die Galaxienverteilung als das Universum halb so alt war wie heute

30.03.2012
Während der deutsch-britischen Astronomietagung NAM2012 gaben die Wissenschaftler des BOSS-Teams (Baryon Oscillation Spectroscopic Survey) heute bekannt, dass sie die Verteilung der Galaxien vor etwa fünf bis sechs Milliarden Jahren so genau vermessen haben wie nie zuvor.

Dies war ein Schlüsselmoment, als die Ausdehnung des Universums nicht mehr langsamer wurde sondern anfing, sich aufgrund einer geheimnisvollen Kraft namens "dunkler Energie" zu beschleunigen. Was hinter dieser dunklen Energie steckt ist eines der großen Rätsel in der Kosmologie und die Wissenschaftler brauchen genaue Messungen der Ausdehnungsgeschichte des Universums – und BOSS liefert genau solche Messungen.


Abb 1: Eine Karte der Galaxienverteilung in einem dünnen Schnitt durch den BOSS-Katalog. Wir sind im Zentrum des Bogens, außerhalb des unteren Randes der Abbildung, jeder schwarze Punkt entspricht einer Galaxie. Der rote Kreis zeigt die ungefähre Größe der BAO-Skala.
BILD: Francesco Montesano/Max-Planck-Institut für extraterrestrische Physik, Sloan Digital Sky Survey III


Fig 2:
Die Signatur der baryonischen akustischen Oszillationen (weiße Kreise) in Galaxienkarte hilft den Astronomen dabei, die Geschichte des sich ausdehnenden Universums nachzuvollziehen.
Diese schematischen Bilder zeigen das Universum zu drei verschiedenen Zeiten: Das Falschfarbenbild rechts zeigt den „kosmischen Mikrowellenhintergrund”, ein Bild des sehr jungen Universums vor 13,7 Milliarden Jahren. Aus den damals kleinen Dichteschwankungen entwickelten sich in die Galaxienhaufen und –filamente, die wir heute sehen. Diese Schwankungen enthalten auch die Signatur der ursprünglichen baryonischen akustischen Oszillationen (weißer Ring, rechts). Als sich das Universum ausdehnte (Mitte und links), blieb die Information über die BAO erhalten und kann aus dem mittleren Abstand der Galaxien abgelesen werden (größere weiße Kreise).
Die Ergebnisse von SDSS-III, die heute bekannt gegeben wurden, sind für Galaxien in einer Entfernung von etwa 5,5 Lichtjahren, zu einer Zeit als die dunkle Energie anfing eine Rolle zu spielen. Vergleicht man diese Ergebnisse mit früheren Messungen von Galaxien in einer Entfernung von 3,8 Milliarden Lichtjahren (links), so kann man messen, wie stark sich das Universum im Laufe der Zeit ausgedehnt hat.
Credit: E. M. Huff, the SDSS-III team, and the South Pole Telescope team. Graphic by Zosia Rostomian.

In sechs Artikeln, die heute veröffentlicht wurden, verwendeten Wissenschaftler des BOSS-Teams, dem auch Forscher des Max-Planck-Instituts für Extraterrestrische Physik angehören, diese und frühere Messdaten, um unterschiedliche kosmologische Modelle stark einzugrenzen

BOSS ist Teil des Sloan Digital Sky Survey (SDSS-III) und begann im Jahr 2009 mit seinem Blick zurück zu einer Zeit, als die dunkle Energie im Universum anfing eine wichtige Rolle zu spielen. Bis 2014 wird das Projekt mit einem speziell entwickelten neuen Spektrographen am 2,5-Meter-Sloan-Teleskop am Apache Point Observatorium in New Mexico, USA, Daten von 1,35 Millionen Galaxien sammeln. In den ersten eineinhalb Jahren hat BOSS bereits ein Zehntel des Himmels abgetastet und für mehr als eine viertel Million Galaxien deren dreidimensionale Positionen bestimmt, woraus sich eine genaue und vollständige Verteilung der Galaxien bis zu einer Entfernung von etwa sechs Milliarden Lichtjahren ergibt.

Die Galaxien bilden ein „kosmisches Netz“ mit vielen unterschiedlichen Strukturen, die wertvolle Informationen über unser Universum enthalten. Insbesondere sind die sogenannten „baryonischen akustischen Oszillationen (BAO)“ für die Wissenschaftler von Interesse, da diese ihnen eine „Standard-Messlatte“ an die Hand geben. BAO sind Überreste aus der Frühphase des Universums, als es eine heiße und dichte „Teilchensuppe“ war.

Kleine Dichteschwankungen durchliefen diese „Suppe“ als Druck- bzw. Schallwellen. Als sich das Universum ausdehnte und abkühlte, sank der Druck ab und so wurden die weitere Ausbreitung dieser Wellen nach etwa 500 Millionen Lichtjahren gestoppt. Diese „eingefrorenen Wellen“ bildeten sich in der Materieverteilung ab und können heute in der Galaxienkarte abgelesen werden: so ist die Wahrscheinlichkeit dafür, zwei Galaxien in diesem Abstand zu finden, etwas höher als für größere oder kleinere Entfernungen.

Misst man nun die scheinbare Größe dieser BAO-Skala in der Verteilung der Galaxien so erhält man Information zu kosmischen Entfernungen. Kombiniert mit einer Messung der Galaxien-„Rotverschiebung“ – einem Maß dafür, wie schnell sich die Galaxien als Folge der kosmischen Expansion von uns entfernen – können die Wissenschaftler somit die Ausdehnungsgeschichte des Universums rekonstruieren.

Damit liefern die BOSS-Daten zusammen mit früheren Analysen jetzt Informationen, um die Parameter des kosmologischen Standardmodells auf eine Genauigkeit von besser als fünf Prozent zu bestimmen. „Alle unterschiedlichen Messungen deuten auf die gleiche Erklärung“, sagt Dr. Ariel Sanchez, Wissenschaftler am Max-Planck-Institut für extraterrestrische Physik und Erstautor bei einem der Artikel, die heute veröffentlicht wurden. „Die dunkle Energie ist konsistent mit Einsteins kosmologischer Konstante: einer kleinen aber nicht vernachlässigbaren Energie, die den Raum kontinuierlich dehnt und damit die beschleunigte Expansion des Universums antreibt.“

Neben der dunklen Energie können die Informationen aus der großräumigen Galaxienverteilung aber auch verwendet werden, um andere wichtige physikalische Parameter wie die Krümmung des Universums, die Neutrino-Masse oder die Phase der Inflation im frühen Universum einzugrenzen. „Aktuelle Beobachtungen zeigen, dass das Universum flach sein muss, mit einer Genauigkeit von besser als 0,5 Prozent“, erklärt Ariel Sanchez. „Und während wir auf der einen Seite einen derart globalen Parameter auf kosmischen Maßstäben messen, können wir gleichzeitig Informationen über Neutrinos auf den kleinsten Skalen erhalten.“

Neutrinos sind winzige Elementarteilchen. Obwohl eine Reihe von Experimenten gezeigt hat, dass diese eine Masse haben müssen, können die Wissenschaftler nicht sagen, wie viel sie wiegen, da man das nur schwer in einem Labor messen kann. Doch als zusätzliche Komponente in der heißen, frühen Phase des Universums haben die Neutrinos Einfluss auf das Wachstum von Strukturen. Damit enthält die Verteilung der Galaxien, wie sie von BOSS sondiert wird, Informationen über die maximale Masse, die diese Neutrinos haben dürfen. „Wir haben hier wirklich die Verbindung zweier extremer Welten, der sehr, sehr großen und der sehr, sehr kleinen“, fügt Ariel Sanchez an.

Aufgrund der hohen Qualität der neuen Daten konnte das BOSS-Team sogar neue Hinweise auf die kosmische Inflation erhalten, einer Zeit kurz nach dem Urknall, als sich das Universum unglaublich schnell ausdehnte. Während der kosmischen Inflation wurden kleine Bereiche des Alls so stark aufgeblasen, dass sie heute das gesamte, für uns beobachtbare Universum bilden. Gleichzeitig wurden auch die winzigen Quantenfluktuationen aufgebläht und bildeten so die Keime der Strukturen, die uns die BOSS-Daten noch heute zeigen.

„Es gibt einen regelrechten Zoo aus alternativen Inflationsmodellen. Mit BOSS bekommen wir neue wichtige Hinweise auf die inflationäre Phase des Universums, und können so den Markt der verfügbaren Modelle etwas ausdünnen“, erklärt Ariel Sanchez.

Bisher stimmen alle Messungen sehr gut mit dem kosmologischen Standardmodell überein, das aus ein paar Prozent gewöhnlicher Materie, etwa einem Viertel Dunkler Materie und dem Rest aus Dunkler Energie besteht. Aber Ariel Sanchez ist vorsichtig: „Das ist nur der Anfang. Wenn wir die kompletten fünf Jahre an BOSS-Daten haben, können wir viel engere Grenzen erwarten, und es gibt auch eine Reihe zukünftiger Projekte, wie EUCLID, die uns noch bessere Messungen liefern werden. Damit werden wir den Antworten auf die großen offenen Fragen der Kosmologie einen Schritt näher kommen.“

Anmerkungen:
1. Der Sloan Digital Sky Survey (SDSS) liefert seit 2000 tiefe Mehrfarbenaufnahmen über ein Viertel des gesamten Nachthimmels. Bei SDSS-III ist das Max-Planck-Institut für Extraterrestrische Physik ein Vollmitglied.

SDSS-III Webseite: http://www.sdss3.org/

2. EUCLID ist eine geplante ESA-Weltraummission zur Erforschung der dunklen Energie, an der das Max-Planck-Institut für Extraterrestrische Physik maßgeblich beteiligt ist.

EUCLID Webseite: http://sci.esa.int/science-e/www/area/index.cfm?fareaid=102

Kontakte:

Dr. Hannelore Hämmerle
Pressesprecherin
Max-Planck-Institut für extraterrestrische Physik, Garching
Tel.: +49 89 30000-3980
E-Mail: hanneh@mpe.mpg.de
Dr. Ariel Sanchez
Max-Planck-Institut für extraterrestrische Physik, Garching
Tel.: +49 89 30000-3776
Mob: +49 176 8006 3852
E-Mail: arielsan@mpe.mpg.de
Originalveröffentlichungen:
The BOSS team:
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample

http://arxiv.org/abs/1203.6594

Ariel G. Sánchez et al.:
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological implications of the large-scale two-point correlation function

http://arxiv.org/abs/1203.6616

Beth Reid et al.:
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measurements of the growth of structure and expansion rate at z=0.57 from anisotropic clustering

http://arxiv.org/abs/1203.6641

Ashley J. Ross el al.:
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: analysis of potential systematics

http://arxiv.org/abs/1203.6499

Rita Tojeiro et al.:
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measuring structure growth using passive galaxies

http://arxiv.org/abs/1203.6565

Marc Manera et al.:
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: a large sample of mock galaxy catalogues

http://arxiv.org/abs/1203.6609

Dr. Hannelore Hämmerle | Max-Planck-Institut
Weitere Informationen:
http://www.mpe.mpg.de/News/PR20120330/text-d.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Internationales Forscherteam entdeckt kohärenten Lichtverstärkungsprozess in Laser-angeregtem Glas
25.09.2017 | Universität Kassel

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops