Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Beobachtung des Nicht-Beobachtbaren

17.12.2013
Physiker stellen Verfahren zur Rekonstruktion der Wellenfunktionen komplexer Moleküle vor

Seit Jahrzehnten suchen Physiker und Chemiker einen Weg, die Wellenfunktion von Elektronen in Atomen, Molekülen und Festkörpern zu messen. Die Welleneigenschaften der Elektronen bestimmen das Verhalten aller Materie, ließen sich bisher aber nur in der Theorie vollständig erfassen.


Ultraviolette Photonen schießen Elektronen aus einer Molekülschicht (grün) heraus, die auf einer Silberoberfläche adsorbiert ist. Die Messung der Energie- und Winkelverteilung der emittierten Elektronen liefert nach Anwendung eines iterativen mathematischen Verfahrens, die Elektronenorbitale des Moleküls (rot / blau).

Quelle: Daniel Lüftner, KFU Graz

Wissenschaftlern aus Graz und Jülich ist es nun erstmals gelungen, diese nicht direkt zugängliche Größe für komplexe Moleküle im Experiment vollständig zu ermitteln. Die Ergebnisse werden in der aktuellen Ausgabe der renommierten Fachzeitschrift Proceedings of the National Academy of Sciences (PNAS) veröffentlicht.

In der Physik werden Elektronen nicht nur als Teilchen, sondern auch als Wellen beschrieben. In der Quantentheorie wird die Wellennatur mathematisch durch die räumliche Wellenfunktion, in Atomen und Molekülen auch Orbitale genannt, erfasst.

"Orbitale beinhalten Informationen über die räumliche Verteilung der Elektronen bei einer bestimmten Energie. Sind sie bekannt, lassen sich alle relevanten Informationen des Systems ableiten", erklärt Ass.-Prof. Peter Puschnig vom Institut für Physik der Karl-Franzens-Universität Graz.

Die Wellenfunktion selbst lässt sich jedoch nicht direkt beobachten. Im Experiment geht eine wichtige Information verloren, die Phase. Doch mit einem mathematischen Trick konnten die Wissenschaftler diese verborgene Größe wiederherstellen und so die Orbitale einer Reihe von organischen Molekülen rekonstruieren.

"Bisher ging man davon aus, dass die Messergebnisse der Photoelektronenspektroskopie, auf denen unser Verfahren beruht, für Moleküle auf Oberflächen durch Beugungsmuster und andere störende Effekte zu stark verzerrt werden. Diese Arbeit zeigt aber, dass die vollständige Rekonstruktion der Wellenfunktion überraschenderweise ganz einfach ist", erläutert Prof. Stefan Tautz vom Peter Grünberg Institut des Forschungszentrums Jülich. Seit einigen Jahren kooperiert er mit Puschnig und führt mit dessen Grazer Kollegen in der Arbeitsgruppe von Prof. Michael Ramsey Experimente am Helmholtz Zentrum Berlin durch.

Für ihre Untersuchungen schossen die Wissenschaftler mithilfe von ultraviolettem Licht Elektronen förmlich aus den Molekülen heraus. Die anschließende Vermessung der Energie- und Winkelverteilung der Elektronen gab Aufschluss über deren räumliche Verteilung im Molekül. Um die fehlende Phaseninformation zu rekonstruieren, nutzten die Physiker eine mathematische Eigenschaft der sogenannten Fourier-Transformation: Wenn die räumliche Ausdehnung der Wellenfunktion bekannt ist, dann lässt sich durch eine Serie von abwechselnden Fourier-Transformationen und -Rücktransformation die Phase schrittweise rekonstruieren. Auf diese Weise konnte das österreichisch-deutsche Team die räumliche Verteilung der Elektronen in fünf Molekülorbitalen entschlüsseln.

Originalpublikation:

Imaging the wave functions of adsorbed molecules. Daniel Lüftner, Thomas Ules, Eva Maria Reinisch, Georg Koller, Serguei Soubatch, F. Stefan Tautz, Michael G. Ramsey, Peter Puschnig. Proceedings of the National Academy of Sciences (PNAS, 2013, published online www.pnas.org/cgi/doi/10.1073/pnas.1315716110)

Weitere Informationen:

Pressemitteilung der Universität Graz:
http://on.uni-graz.at/de/forschen/article/vermessung-von-molekuelen/

Peter Grünberg Institut, Bereich Funktionale Nanostrukturen an Oberflächen (PGI-3):

http://www.fz-juelich.de/pgi/pgi-3/EN/Home/home_node.html

Ansprechpartner:

Prof. Dr. Stefan Tautz
Peter Grünberg Institut, Funktionale Nanostrukturen an Oberflächen (PGI-3)
Forschungszentrum Jülich
Tel. +49 2461 61-4561
E-Mail: s.tautz@fz-juelich.de
Ass.-Prof. Dr. Peter Puschnig
Institut für Physik
Karl-Franzens-Universität Graz
Tel. +43 316 380 5230
E-Mail: peter.puschnig@uni-graz.at
Pressekontakt:
Tobias Schlößer
Unternehmenskommunikation, Forschungszentrum Jülich
Tel. +49 2461 61-4771
t.schloesser@fz-juelich.de

Tobias Schlößer | Forschungszentrum Jülich GmbH
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Stabile Quantenbits
08.12.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Goldmedaille für die praktischen Ergebnisse der Forschungsarbeit bei Nutricard

11.12.2017 | Unternehmensmeldung

Nachwuchs knackt Nüsse - Azubis der Friedhelm Loh Group für Projekte prämiert

11.12.2017 | Unternehmensmeldung

Mit 3D-Zellkulturen gegen Krebsresistenzen

11.12.2017 | Medizin Gesundheit