Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Beobachtung des Nicht-Beobachtbaren

17.12.2013
Physiker stellen Verfahren zur Rekonstruktion der Wellenfunktionen komplexer Moleküle vor

Seit Jahrzehnten suchen Physiker und Chemiker einen Weg, die Wellenfunktion von Elektronen in Atomen, Molekülen und Festkörpern zu messen. Die Welleneigenschaften der Elektronen bestimmen das Verhalten aller Materie, ließen sich bisher aber nur in der Theorie vollständig erfassen.


Ultraviolette Photonen schießen Elektronen aus einer Molekülschicht (grün) heraus, die auf einer Silberoberfläche adsorbiert ist. Die Messung der Energie- und Winkelverteilung der emittierten Elektronen liefert nach Anwendung eines iterativen mathematischen Verfahrens, die Elektronenorbitale des Moleküls (rot / blau).

Quelle: Daniel Lüftner, KFU Graz

Wissenschaftlern aus Graz und Jülich ist es nun erstmals gelungen, diese nicht direkt zugängliche Größe für komplexe Moleküle im Experiment vollständig zu ermitteln. Die Ergebnisse werden in der aktuellen Ausgabe der renommierten Fachzeitschrift Proceedings of the National Academy of Sciences (PNAS) veröffentlicht.

In der Physik werden Elektronen nicht nur als Teilchen, sondern auch als Wellen beschrieben. In der Quantentheorie wird die Wellennatur mathematisch durch die räumliche Wellenfunktion, in Atomen und Molekülen auch Orbitale genannt, erfasst.

"Orbitale beinhalten Informationen über die räumliche Verteilung der Elektronen bei einer bestimmten Energie. Sind sie bekannt, lassen sich alle relevanten Informationen des Systems ableiten", erklärt Ass.-Prof. Peter Puschnig vom Institut für Physik der Karl-Franzens-Universität Graz.

Die Wellenfunktion selbst lässt sich jedoch nicht direkt beobachten. Im Experiment geht eine wichtige Information verloren, die Phase. Doch mit einem mathematischen Trick konnten die Wissenschaftler diese verborgene Größe wiederherstellen und so die Orbitale einer Reihe von organischen Molekülen rekonstruieren.

"Bisher ging man davon aus, dass die Messergebnisse der Photoelektronenspektroskopie, auf denen unser Verfahren beruht, für Moleküle auf Oberflächen durch Beugungsmuster und andere störende Effekte zu stark verzerrt werden. Diese Arbeit zeigt aber, dass die vollständige Rekonstruktion der Wellenfunktion überraschenderweise ganz einfach ist", erläutert Prof. Stefan Tautz vom Peter Grünberg Institut des Forschungszentrums Jülich. Seit einigen Jahren kooperiert er mit Puschnig und führt mit dessen Grazer Kollegen in der Arbeitsgruppe von Prof. Michael Ramsey Experimente am Helmholtz Zentrum Berlin durch.

Für ihre Untersuchungen schossen die Wissenschaftler mithilfe von ultraviolettem Licht Elektronen förmlich aus den Molekülen heraus. Die anschließende Vermessung der Energie- und Winkelverteilung der Elektronen gab Aufschluss über deren räumliche Verteilung im Molekül. Um die fehlende Phaseninformation zu rekonstruieren, nutzten die Physiker eine mathematische Eigenschaft der sogenannten Fourier-Transformation: Wenn die räumliche Ausdehnung der Wellenfunktion bekannt ist, dann lässt sich durch eine Serie von abwechselnden Fourier-Transformationen und -Rücktransformation die Phase schrittweise rekonstruieren. Auf diese Weise konnte das österreichisch-deutsche Team die räumliche Verteilung der Elektronen in fünf Molekülorbitalen entschlüsseln.

Originalpublikation:

Imaging the wave functions of adsorbed molecules. Daniel Lüftner, Thomas Ules, Eva Maria Reinisch, Georg Koller, Serguei Soubatch, F. Stefan Tautz, Michael G. Ramsey, Peter Puschnig. Proceedings of the National Academy of Sciences (PNAS, 2013, published online www.pnas.org/cgi/doi/10.1073/pnas.1315716110)

Weitere Informationen:

Pressemitteilung der Universität Graz:
http://on.uni-graz.at/de/forschen/article/vermessung-von-molekuelen/

Peter Grünberg Institut, Bereich Funktionale Nanostrukturen an Oberflächen (PGI-3):

http://www.fz-juelich.de/pgi/pgi-3/EN/Home/home_node.html

Ansprechpartner:

Prof. Dr. Stefan Tautz
Peter Grünberg Institut, Funktionale Nanostrukturen an Oberflächen (PGI-3)
Forschungszentrum Jülich
Tel. +49 2461 61-4561
E-Mail: s.tautz@fz-juelich.de
Ass.-Prof. Dr. Peter Puschnig
Institut für Physik
Karl-Franzens-Universität Graz
Tel. +43 316 380 5230
E-Mail: peter.puschnig@uni-graz.at
Pressekontakt:
Tobias Schlößer
Unternehmenskommunikation, Forschungszentrum Jülich
Tel. +49 2461 61-4771
t.schloesser@fz-juelich.de

Tobias Schlößer | Forschungszentrum Jülich GmbH
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften