Basler Forscher schauen Katalysator bei der Arbeit zu

Das Zwischenprodukt der Ullmann-Reaktion mit dem Silberkatalysator (silbern) zwischen den Kohlenstoffringen (schwarz) und Schwefelatomen (gelb) krümmt sich wie eine Brücke über der Silber-Oberfläche. Universität Basel, Departement Physik

Die untersuchte Ullmann-Reaktion ist eine chemische Reaktion, bei der Silberatome die Bindung von zwei Kohlenstoffatomen katalysieren, an denen vorher Iod gebunden war. Obwohl diese Art der Reaktion schon seit 1901 bekannt ist und für zahlreiche wichtige chemische Umwandlungen angewendet wird, konnte das Zwischenprodukt dieser Reaktion bisher nicht genau beobachtet werden.

Dieses Zwischenprodukt haben nun Forscher um Prof. Ernst Meyer und Dr. Shigeki Kawai vom Swiss Nanoscience Institute und dem Departement Physik der Universität Basel mithilfe eines Rasterkraftmikroskops in atomarer Auflösung dargestellt.

Überraschenderweise zeigte sich, dass die Silberatome schon bei Temperaturen von etwa –120 °C mit den Molekülen reagieren und gekrümmt wie eine Brücke über einen Fluss erscheinen. Im zweiten Schritt der Reaktion, der eine Temperaturerhöhung auf etwa 105 °C benötigt und zum Endprodukt führt, werden die Silberatome wieder frei und zwei Kohlenstoffatomen binden aneinander.

Energieberechnung möglich

Die Ullmann-Reaktion wird schon seit Langem für chemische Synthesen genutzt. In jüngster Zeit hat sich das Interesse an dieser Kopplung von Kohlenstoffatomen weiter verstärkt, da damit organische Moleküle an Oberflächen gebunden und lösungsmittelfrei Polymere hergestellt werden. Eine genaue Beobachtung der Arbeit des eingesetzten Katalysators lässt die Wissenschaftler den Ablauf der Reaktion besser verstehen.

Bisherige Analysen konnten die räumliche Anordnung des metallorganischen Zwischenprodukts nicht zeigen. Erst die jetzt erhaltenen detailgenauen Aufnahmen ermöglichten dem Projektpartner Prof. Stefan Goedecker vom Departement Physik der Universität Basel, den Energieumsatz der untersuchten Ullmann-Reaktion zu berechnen. Diese Daten bestätigten die ungewöhnliche räumliche Anordnung des Zwischenprodukts und liefern Hinweise zur Optimierung der Reaktion.

Relativ geringe Temperaturen

Es liegt wahrscheinlich an der beobachteten Krümmung bzw. Flexibilität der Moleküle, dass die Reaktion relativ geringe Temperaturen von 105 °C benötigt. Die Moleküle stehen unter mechanischer Spannung und können somit leichter reagieren, also bei geringeren Temperaturen. Wenn es gelänge, auch mit andern Katalysatoren solche unter Spannung stehende Zwischenprodukte zu erreichen, könnten katalytische Reaktionen auch bei tieferen Temperaturen möglich werden. Dies wäre ökologisch und ökonomisch sinnvoll, da klassische Katalysatoren mit Platin, Rhodium oder Palladium oft hohe Betriebstemperaturen von 500 °C benötigen – was zur Emission von Abgasen im kalten Zustand führt.

Die Forschungsarbeiten wurden im Rahmen einer Kooperation zwischen dem Departement Physik der Universität Basel, dem National Institute of Materials Science (Japan), der Japan Science and Technology Agency (Japan), der University of Tokyo (Japan) und der Shadid Beheshti University (Iran) durchgeführt.

Originalarbeit

Shigeki Kawai, Ali Sadeghi, Toshihiro Okamoto, Chikahiko Mitsui, Rémy Pawlak, Tobias Meier, Jun Takeya, Stefan Goedecker and Ernst Meyer
Organometallic Bonding in an Ullmann-Type On-Surface Chemical Reaction Studied by High-Resolution Atomic Force Microscopy
Small (2016), DOI: 10.1002/smll.201601216

Weitere Auskünfte

Prof. Dr. Ernst Meyer, Universität Basel, Departement Physik, Tel. +41 61 267 37 24, E-Mail: ernst.meyer@unibas.ch

https://www.unibas.ch/de/Aktuell/News/Uni-Research/Basler-Forscher-schauen-Katal…

Media Contact

Olivia Poisson Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer