Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Attosekundenphysik - Jeder Schuss ein Treffer

20.04.2009
MPQ-Wissenschaftler entwickeln neue Methode zur vollständigen Charakterisierung einzelner ultrakurzer Laserpulse

Momentaufnahmen vom Innenleben der Atome zu erhalten, ist eines der wichtigsten Ziele der Attosekundenphysik: Lichtblitze mit einer Dauer von nur einigen hundert Attosekunden (1 as =10 hoch -18 Sekunden) sollen die Bewegung der Elektronen um den Atomkern sichtbar machen.

Erzeugt werden diese Lichtblitze mit breitbandigen, ultrakurzen intensiven Laserpulsen im sichtbaren und nahen infraroten Spektralbereich (400 - 1000 nm). Form und Phase der den Puls erzeugenden Trägerwelle müssen dafür präzise bestimmt und gesteuert werden. Die Messung war bislang nur möglich durch Mittelung über eine große Zahl von bereits phasenstabilisierten Pulsen.

Ein Team um Prof. Reinhard Kienberger (über den Exzellenzcluster "Munich-Centre for Advanced Photonics" Professor an der Technischen Universität München und Leiter der selbstständigen Nachwuchsgruppe Attosekunden-Dynamik in der Abteilung Attosekundenphysik von Prof. Ferenc Krausz am MPQ) hat nun in Zusammenarbeit mit Prof. Gerhard Paulus, Universität Jena, eine neue Methode entwickelt, die es erstmals erlaubt, einzelne Laserpulse vollständig zu charakterisieren (Nature Physics, Advance Online Publication, 19. April 2009, DOI 10.1038/NPHYS1250).

Dabei bestimmen die Wissenschaftler die Eigenschaften der Trägerwelle aus den Spektren der durch den einzelnen Puls in Xenon-Gas freigesetzten Elektronen. Der Vorteil dieser Methode liegt darin, dass sie auch für Pulse aus Lasern mit niedriger Repetitionsrate geeignet ist, wie man sie für die Erzeugung sehr energiereicher Attosekundenblitze benötigt. Aber die neue Technik verbessert auch die Vorraussetzungen für die Untersuchung anderer phasenabhängiger Reaktionen wie die Dynamik von Ionisationsprozessen oder molekulare Dissoziationsprozesse.

In dem hier beschriebenen Experiment schießen die Physiker ultrakurze Laserpulse hoher Intensität in ein Gastarget und bestimmen im Anschluss daran die Energie und die Richtung der dadurch frei gesetzten Elektronen. Die Pulse sind linear polarisiert, d.h. das elektrische Feld schwingt in einer Ebene senkrecht zur Ausbreitungsrichtung. Der Intensitätsverlauf des Pulses wird durch die sogenannte "Pulseinhüllende" bestimmt. Wie in der Abbildung zu sehen ist, hängt bei einem Laserpuls aus wenigen Schwingungen die elektrische Feldstärke extrem stark von der relativen Lage, d.h. der "Phase", innerhalb der Einhüllenden ab, was wiederum die Wirkung des Pulses beim Auftreffen auf ein Atom entscheidend beeinflusst. Bei hohen Repetitionsraten verwendet man daher Laserpulse, deren Phasen bereits stabilisiert sind.

"Alle bisherigen Experimente mitteln über eine große Zahl von Laserschüssen für einen einzigen Messpunkt und mitteln dabei über (geringfügige) Phasenfluktuationen. Bei niedrigen Wiederholraten, z.B. 10 Hertz, haben die einzelnen Pulse eine sehr unterschiedliche Phase", erklärt Prof. Reinhard Kienberger. "Hier müssen wir die absolute Phase eines Laserpulses im Einzelschuss bestimmen, und das erforderte technische Weiterentwicklung und einen grundsätzlich neuen Ansatz der Datenevaluierung."

Je weniger Zyklen der Laserpuls enthält (siehe Abb. 1), desto stärker beeinflusst die relative Phase das Ergebnis der Reaktion. So wird - etwas vereinfacht - das höchstenergetische Photoelektron bei Puls A erwartungsgemäß nach links (in Bezug auf die Ausbreitungsrichtung) geschleudert, bei Puls B nach rechts. Dies gilt allerdings nur für die Elektronen, die genau zu dem Zeitpunkt beschleunigt werden, an dem die Feldstärke ihr Maximum erreicht hat. Sie erhalten durch das starke Laserfeld weit mehr Energie (bis das 10-fache), als sie für die Freisetzung vom Atom benötigen, weshalb sie auch als ATI (Above Threshold Inonization)-Elektronen bezeichnet werden. Bei Beschränkung auf energiereiche Photoelektronen kann man also aus deren Richtung auf die relative Phase der Trägerwelle schließen. Vergleicht man nun die Richtungsasymmetrie der ATI-Elektronen bei verschiedenen Energiebereichen, erhält man eindeutige Information über die Phase des Pulses, der die Elektronen aus dem Gas freigesetzt hat. In einer Reihe von Messungen, in denen sie nicht-phasenstabilisierte Pulse verwendeten bzw. die Phase stabilisierter Pulse gezielt variierten, wiesen die MPQ-Wissenschaftler die erwartete und auch numerisch berechnete Asymmetrie bei der Aussendung von Photoelektronen experimentell nach. Auf diese Weise bestimmten sie für einzelne Laserpulse die relative Phase der Trägerwelle mit einer Genauigkeit von nur wenigen Grad (Abb. 2). Dadurch lässt sich die Qualität der Phasenstabilisierung bei Lasern mit hoher Repetitionsrate genauer als bisher überprüfen.

Die hier beschriebene Methode ermöglicht es weiters, gezielt Laserpulse mit der gewünschten Phase zu selektieren, wie sie für die Erzeugung von energiereichen Attosekundenblitzen im Kiloelektronenvolt-Bereich notwendig sind. Eine der größten Herausforderungen der derzeitigen Laserentwicklung besteht in der weiteren Verkürzung der Pulsdauern bis hin zu Laserpulsen aus nur einem Wellenzug. Da, wie numerische Rechnungen zeigen, die Asymmetrie in den Spektren der ATI-Elektronen mit abnehmender Pulsdauer immer stärker wird, ist das hier beschriebene Verfahren für die Charakterisierung solcher Pulse optimal.

Olivia Meyer-Streng

Originalveröffentlichung:
T.Wittmann, B. Horvath, W. Helml, M. G. Schätzel, X. Gu, A. L. Cavalieri, G. G. Paulus and R. Kienberger
"Single-shot carrier-envelope phase measurement of few-cycle laser pulses",
Nature Physics, Advance online Publication, 19. April 2009
Kontakt:
Olivia Meyer-Streng
Presse & Kommunikation
Max-Planck-Institut für Quantenoptik
Telefon: +49 - 89 / 32905 - 213
Fax: +49 - 89 / 32905 - 200
E-Mail: olivia.meyer-streng@mpq.mpg.de
Prof. Reinhard Kienberger
Technische Universität München
Fakultät für Physik, E11
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1
85748 Garching, Germany
reinhard.kienberger@mpq.mpg.de

Dr. Olivia Meyer-Streng | idw
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quanten-Boten kommunizieren doppelt so schnell
22.02.2018 | Österreichische Akademie der Wissenschaften

nachricht Highlight der Halbleiter-Forschung
20.02.2018 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von Hefe für Demenzerkrankungen lernen

22.02.2018 | Biowissenschaften Chemie

Sektorenkopplung: Die Energiesysteme wachsen zusammen

22.02.2018 | Seminare Workshops

Die Entschlüsselung der Struktur des Huntingtin Proteins

22.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics