Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Attosekundenphysik - Jeder Schuss ein Treffer

20.04.2009
MPQ-Wissenschaftler entwickeln neue Methode zur vollständigen Charakterisierung einzelner ultrakurzer Laserpulse

Momentaufnahmen vom Innenleben der Atome zu erhalten, ist eines der wichtigsten Ziele der Attosekundenphysik: Lichtblitze mit einer Dauer von nur einigen hundert Attosekunden (1 as =10 hoch -18 Sekunden) sollen die Bewegung der Elektronen um den Atomkern sichtbar machen.

Erzeugt werden diese Lichtblitze mit breitbandigen, ultrakurzen intensiven Laserpulsen im sichtbaren und nahen infraroten Spektralbereich (400 - 1000 nm). Form und Phase der den Puls erzeugenden Trägerwelle müssen dafür präzise bestimmt und gesteuert werden. Die Messung war bislang nur möglich durch Mittelung über eine große Zahl von bereits phasenstabilisierten Pulsen.

Ein Team um Prof. Reinhard Kienberger (über den Exzellenzcluster "Munich-Centre for Advanced Photonics" Professor an der Technischen Universität München und Leiter der selbstständigen Nachwuchsgruppe Attosekunden-Dynamik in der Abteilung Attosekundenphysik von Prof. Ferenc Krausz am MPQ) hat nun in Zusammenarbeit mit Prof. Gerhard Paulus, Universität Jena, eine neue Methode entwickelt, die es erstmals erlaubt, einzelne Laserpulse vollständig zu charakterisieren (Nature Physics, Advance Online Publication, 19. April 2009, DOI 10.1038/NPHYS1250).

Dabei bestimmen die Wissenschaftler die Eigenschaften der Trägerwelle aus den Spektren der durch den einzelnen Puls in Xenon-Gas freigesetzten Elektronen. Der Vorteil dieser Methode liegt darin, dass sie auch für Pulse aus Lasern mit niedriger Repetitionsrate geeignet ist, wie man sie für die Erzeugung sehr energiereicher Attosekundenblitze benötigt. Aber die neue Technik verbessert auch die Vorraussetzungen für die Untersuchung anderer phasenabhängiger Reaktionen wie die Dynamik von Ionisationsprozessen oder molekulare Dissoziationsprozesse.

In dem hier beschriebenen Experiment schießen die Physiker ultrakurze Laserpulse hoher Intensität in ein Gastarget und bestimmen im Anschluss daran die Energie und die Richtung der dadurch frei gesetzten Elektronen. Die Pulse sind linear polarisiert, d.h. das elektrische Feld schwingt in einer Ebene senkrecht zur Ausbreitungsrichtung. Der Intensitätsverlauf des Pulses wird durch die sogenannte "Pulseinhüllende" bestimmt. Wie in der Abbildung zu sehen ist, hängt bei einem Laserpuls aus wenigen Schwingungen die elektrische Feldstärke extrem stark von der relativen Lage, d.h. der "Phase", innerhalb der Einhüllenden ab, was wiederum die Wirkung des Pulses beim Auftreffen auf ein Atom entscheidend beeinflusst. Bei hohen Repetitionsraten verwendet man daher Laserpulse, deren Phasen bereits stabilisiert sind.

"Alle bisherigen Experimente mitteln über eine große Zahl von Laserschüssen für einen einzigen Messpunkt und mitteln dabei über (geringfügige) Phasenfluktuationen. Bei niedrigen Wiederholraten, z.B. 10 Hertz, haben die einzelnen Pulse eine sehr unterschiedliche Phase", erklärt Prof. Reinhard Kienberger. "Hier müssen wir die absolute Phase eines Laserpulses im Einzelschuss bestimmen, und das erforderte technische Weiterentwicklung und einen grundsätzlich neuen Ansatz der Datenevaluierung."

Je weniger Zyklen der Laserpuls enthält (siehe Abb. 1), desto stärker beeinflusst die relative Phase das Ergebnis der Reaktion. So wird - etwas vereinfacht - das höchstenergetische Photoelektron bei Puls A erwartungsgemäß nach links (in Bezug auf die Ausbreitungsrichtung) geschleudert, bei Puls B nach rechts. Dies gilt allerdings nur für die Elektronen, die genau zu dem Zeitpunkt beschleunigt werden, an dem die Feldstärke ihr Maximum erreicht hat. Sie erhalten durch das starke Laserfeld weit mehr Energie (bis das 10-fache), als sie für die Freisetzung vom Atom benötigen, weshalb sie auch als ATI (Above Threshold Inonization)-Elektronen bezeichnet werden. Bei Beschränkung auf energiereiche Photoelektronen kann man also aus deren Richtung auf die relative Phase der Trägerwelle schließen. Vergleicht man nun die Richtungsasymmetrie der ATI-Elektronen bei verschiedenen Energiebereichen, erhält man eindeutige Information über die Phase des Pulses, der die Elektronen aus dem Gas freigesetzt hat. In einer Reihe von Messungen, in denen sie nicht-phasenstabilisierte Pulse verwendeten bzw. die Phase stabilisierter Pulse gezielt variierten, wiesen die MPQ-Wissenschaftler die erwartete und auch numerisch berechnete Asymmetrie bei der Aussendung von Photoelektronen experimentell nach. Auf diese Weise bestimmten sie für einzelne Laserpulse die relative Phase der Trägerwelle mit einer Genauigkeit von nur wenigen Grad (Abb. 2). Dadurch lässt sich die Qualität der Phasenstabilisierung bei Lasern mit hoher Repetitionsrate genauer als bisher überprüfen.

Die hier beschriebene Methode ermöglicht es weiters, gezielt Laserpulse mit der gewünschten Phase zu selektieren, wie sie für die Erzeugung von energiereichen Attosekundenblitzen im Kiloelektronenvolt-Bereich notwendig sind. Eine der größten Herausforderungen der derzeitigen Laserentwicklung besteht in der weiteren Verkürzung der Pulsdauern bis hin zu Laserpulsen aus nur einem Wellenzug. Da, wie numerische Rechnungen zeigen, die Asymmetrie in den Spektren der ATI-Elektronen mit abnehmender Pulsdauer immer stärker wird, ist das hier beschriebene Verfahren für die Charakterisierung solcher Pulse optimal.

Olivia Meyer-Streng

Originalveröffentlichung:
T.Wittmann, B. Horvath, W. Helml, M. G. Schätzel, X. Gu, A. L. Cavalieri, G. G. Paulus and R. Kienberger
"Single-shot carrier-envelope phase measurement of few-cycle laser pulses",
Nature Physics, Advance online Publication, 19. April 2009
Kontakt:
Olivia Meyer-Streng
Presse & Kommunikation
Max-Planck-Institut für Quantenoptik
Telefon: +49 - 89 / 32905 - 213
Fax: +49 - 89 / 32905 - 200
E-Mail: olivia.meyer-streng@mpq.mpg.de
Prof. Reinhard Kienberger
Technische Universität München
Fakultät für Physik, E11
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1
85748 Garching, Germany
reinhard.kienberger@mpq.mpg.de

Dr. Olivia Meyer-Streng | idw
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Methode für die Datenübertragung mit Licht
29.05.2017 | Leibniz-Institut für Photonische Technologien e. V.

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Methode für die Datenübertragung mit Licht

Der steigende Bedarf an schneller, leistungsfähiger Datenübertragung erfordert die Entwicklung neuer Verfahren zur verlustarmen und störungsfreien Übermittlung von optischen Informationssignalen. Wissenschaftler der Universität Johannesburg, des Instituts für Angewandte Optik der Friedrich-Schiller-Universität Jena und des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) präsentieren im Fachblatt „Journal of Optics“ eine neue Möglichkeit, glasfaserbasierte und kabellose optische Datenübertragung effizient miteinander zu verbinden.

Dank des Internets können wir in Sekundenbruchteilen mit Menschen rund um den Globus in Kontakt treten. Damit die Kommunikation reibungslos funktioniert,...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebensdauer alternder Brücken - prüfen und vorausschauen

29.05.2017 | Veranstaltungen

49. eucen-Konferenz zum Thema Lebenslanges Lernen an Universitäten

29.05.2017 | Veranstaltungen

Internationale Konferenz an der Schnittstelle von Literatur, Kultur und Wirtschaft

29.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligente Sensoren mit System

29.05.2017 | Messenachrichten

Geckos kommunizieren überraschend flexibel

29.05.2017 | Biowissenschaften Chemie

1,5 Millionen Euro für vier neue „Innovative Training Networks” an der Universität Hamburg

29.05.2017 | Förderungen Preise