Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Attosekunden-Tanz zweier Elektronen auf schwankender schiefer Ebene

05.03.2012
Neue Untersuchungen am Heidelberger Max-Planck-Institut für Kernphysik vermessen die Beteiligung doppelt angeregter Übergangszustände bei der Doppelionisation von Atomen in starken Laserfeldern. Beim Zerfall diese Zustände werden die Elektronen mit einem zeitlichen Abstand von etwa 200 Attosekunden freigesetzt. (Physical Review Letters, 17. Februar 2012).

Die Doppelionisation, also die Freisetzung zweier Elektronen, eines Atoms innerhalb eines ultrakurzen intensiven Laserimpulses entwickelte sich in den letzten zwei Jahrzehnten zu einem intensiv bearbeiteten Gebiet der Atomphysik und Quantenoptik.


Abb. 1. Doppelionisation von Argon-Atomen im starken Laserfeld. (a) Tunnelionisation des ersten Elektrons. (b) Rekollision und Bildung eines gebundenen doppelt angeregten Übergangszustands. (c) Zerfall des Übergangszustands durch Feldionisation. Grafik: MPIK


Abb. 2. Oben links: Bewegung der zu unterschiedlichen Zeiten freigesetzten Elektronen. Oben rechts: Gemessene Häufigkeitsverteilung der Elektronen-Geschwindigkeit. Unten: Theoretische Modellrechnung der Geschwindigkeitsverteilung für verschiedene Zeitdifferenzen. Grafik: MPIK

Von besonderem Interesse war und ist dabei die Tatsache, dass – abgesehen vom Bereich sehr hoher Laserintensitäten – die Elektronen nicht schrittweise und unabhängig voneinander durch Feldionisation freigesetzt werden, sondern in einem korrelierten Prozess. Hierbei wird zunächst ein Elektron vom starken elektrischen Wechselfeld des Lasers aus dem Atom herausgerissen und dann hin- und hergetrieben, so dass es schließlich in einer Rekollision mit seinem Mutterion ein weiteres Elektron herausschlagen kann.

Dieser Mechanismus wurde in einer Vielzahl von Arbeiten experimentell und theoretisch untersucht und ist inzwischen recht gut verstanden. Was aber geschieht, wenn bei kleineren Intensitäten die Energie des ersten Elektrons bei der Rekollision für den weiteren Ionisationsschritt nicht mehr ausreicht? Diese wie auch die Frage nach dem zeitlichen Ablauf solcher Prozesse haben nun Physiker um Robert Moshammer am Heidelberger Max-Planck-Institut für Kernphysik (MPIK) in Zusammenarbeit mit Kollegen vom MPI für Quantenoptik untersucht.

Untersucht wurde die Doppelionisation von Argon in ultrakurzen Infrarot-Laserimpulsen von wenigen Femtosekunden (10^–15 s) Dauer. Selbst wenn man nur die zwei aktiven Elektronen und den Ionenrumpf betrachtet, hat man hier ein Dreikörperproblem vor sich, das in der Theorie nur numerisch gelöst werden kann. Hinzu tritt die Wechselwirkung mit dem starken Laserfeld. Abb. 1 illustriert den Mechanismus im untersuchten Intensitätsbereich von knapp 10^14 W/cm^2. Dargestellt sind schematisch zwei Elektronen im trichterförmigen Coulomb-Potentialtopf, dem sich das oszillierende Laserfeld wie eine hin und her schwankende schiefe Ebene überlagert. Der zeitliche Verlauf des Feldes ist jeweils durch die gelbe Kurve oben links angegeben.

Im ersten Schritt (a) tunnelt eines der Elektronen durch die Potentialbarriere heraus und wird anschließend vom Laserfeld beschleunigt und unter Energiegewinn zum Mutterion zurückgetrieben. Bei der betrachteten Laserintensität reicht die Energieallerdings nicht aus, um das zweite Elektron aus dem Potentialtopf herauszuheben. Es kann aber auf ein höheres Energieniveau angehoben werden, wobei das erste Elektron wieder in das Atom eingefangen wird und ebenfalls ein oberes Energieniveau besetzt (b). Da zwei Elektronen beteiligt sind, spricht man auch von dielektronischer Rekombination. Solche doppelt angeregten Zustände sind zwar nur schwach gebunden, aber es ist dennoch nicht ganz einfach, daraus beide Elektronen zugleich freizusetzen, da sie sich gegenseitig durch ihre elektrische Abstoßung behindern. Oft fällt eines der Elektronen wieder in einen tieferen Zustand zurück, so dass nur eine einfache Ionisation erfolgt. Im betrachteten Fall hilft aber das Laserfeld, da die Elektronen sich frei über die Barriere bewegen können und nicht durch diese hindurch tunneln müssen.

„Wir haben uns gefragt, wie so ein doppelt angeregter Zustand als Dreikörpersystem im Laserfeld zerfällt und mit welchem zeitlichen Abstand die beiden Elektronen freigesetzt werden“, so Robert Moshammer. „Die Zeiten, um die es dabei geht, liegen im Bereich von Attosekunden (10^–18 s) und die Herausforderung liegt darin, so extrem kurze Vorgänge zu vermessen“. Hierbei hilft den Forschern die Physik selbst, denn die Geschwindigkeit, die das Elektron durch Beschleunigung im Laserfeld erhält, hängt von der Feldstärke zum Zeitpunkt der Freisetzung ab (Abb 2). Die Geschwindigkeit der Elektronen wiederum lässt sich im Experiment mit einem so genannten Reaktionsmikroskop sehr genau bestimmen. Voraussetzung ist aber, dass der Laserimpuls so kurz ist, dass der ganze Vorgang innerhalb nur einer Schwingungsperiode des Laserfeldes abgeschlossen ist, was bei Impulsen von 5 fs Dauer auch erreicht wurde. Die Häufigkeit der gemessenen Geschwindigkeiten der beiden Elektronen lässt sich in einem Diagramm darstellen, worin der Abstand von der Diagonalen der Geschwindigkeitsdifferenz entspricht. Diese wiederum lässt sich in eine Zeitdifferenz übersetzen: Je größer der Abstand der Ereignisse von der Diagonalen umso größer ist die Zeit zwischen der Freisetzung der beiden Elektronen aus dem doppelt angeregten Zustand.

Zum Vergleich mit den experimentellen Daten wurden Modellrechnungen durchgeführt und die Elektronen darin wie klassische Teilchen behandelt. Diese für ein Quantensystem recht grob erscheinende Näherung ist für höher angeregte Zustände gerechtfertigt und liefert brauchbare Ergebnisse. Die beste Übereinstimmung mit dem Experiment ergab sich für die Fälle, wo der zeitliche Abstand etwa 200 Attosekunden betrug. Zudem bestätigt dies die Existenz doppelt angeregter Übergangszustände, durch welche die Doppelionisation erfolgt.

Kontakt:
Dr. Robert Moshammer
Max-Planck-Institut für Kernphysik, Heidelberg
Tel.: (+49)6221-516-281
E-Mail: robert.moshammer (at) mpi-hd.mpg.de

Originalveröffentlichung:
N. Camus, B. Fischer, M. Kremer, V. Sharma, A. Rudenko, B. Bergues, M. Kübel, N. G. Johnson, M. F. Kling, T. Pfeifer, J. Ullrich and R. Moshammer
Attosecond Correlated Dynamics of Two Electrons Passing through a Transition State
Physical Review Letters 108, 073003 (2012)
http://link.aps.org/doi/10.1103/PhysRevLett.108.073003
doi: 10.1103/PhysRevLett.108.073003

Dr. Bernold Feuerstein | Max-Planck-Institut
Weitere Informationen:
http://www.mpi-hd.mpg.de/ullrich/page.php?tag=laser

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MADMAX: Ein neues Experiment zur Erforschung der Dunklen Materie
20.10.2017 | Max-Planck-Institut für Physik

nachricht Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung
20.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften

Neues Sensorsystem sorgt für sichere Ernte

23.10.2017 | Informationstechnologie

Salmonellen als Medikament gegen Tumore

23.10.2017 | Biowissenschaften Chemie