Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Attosekunden-Tanz zweier Elektronen auf schwankender schiefer Ebene

05.03.2012
Neue Untersuchungen am Heidelberger Max-Planck-Institut für Kernphysik vermessen die Beteiligung doppelt angeregter Übergangszustände bei der Doppelionisation von Atomen in starken Laserfeldern. Beim Zerfall diese Zustände werden die Elektronen mit einem zeitlichen Abstand von etwa 200 Attosekunden freigesetzt. (Physical Review Letters, 17. Februar 2012).

Die Doppelionisation, also die Freisetzung zweier Elektronen, eines Atoms innerhalb eines ultrakurzen intensiven Laserimpulses entwickelte sich in den letzten zwei Jahrzehnten zu einem intensiv bearbeiteten Gebiet der Atomphysik und Quantenoptik.


Abb. 1. Doppelionisation von Argon-Atomen im starken Laserfeld. (a) Tunnelionisation des ersten Elektrons. (b) Rekollision und Bildung eines gebundenen doppelt angeregten Übergangszustands. (c) Zerfall des Übergangszustands durch Feldionisation. Grafik: MPIK


Abb. 2. Oben links: Bewegung der zu unterschiedlichen Zeiten freigesetzten Elektronen. Oben rechts: Gemessene Häufigkeitsverteilung der Elektronen-Geschwindigkeit. Unten: Theoretische Modellrechnung der Geschwindigkeitsverteilung für verschiedene Zeitdifferenzen. Grafik: MPIK

Von besonderem Interesse war und ist dabei die Tatsache, dass – abgesehen vom Bereich sehr hoher Laserintensitäten – die Elektronen nicht schrittweise und unabhängig voneinander durch Feldionisation freigesetzt werden, sondern in einem korrelierten Prozess. Hierbei wird zunächst ein Elektron vom starken elektrischen Wechselfeld des Lasers aus dem Atom herausgerissen und dann hin- und hergetrieben, so dass es schließlich in einer Rekollision mit seinem Mutterion ein weiteres Elektron herausschlagen kann.

Dieser Mechanismus wurde in einer Vielzahl von Arbeiten experimentell und theoretisch untersucht und ist inzwischen recht gut verstanden. Was aber geschieht, wenn bei kleineren Intensitäten die Energie des ersten Elektrons bei der Rekollision für den weiteren Ionisationsschritt nicht mehr ausreicht? Diese wie auch die Frage nach dem zeitlichen Ablauf solcher Prozesse haben nun Physiker um Robert Moshammer am Heidelberger Max-Planck-Institut für Kernphysik (MPIK) in Zusammenarbeit mit Kollegen vom MPI für Quantenoptik untersucht.

Untersucht wurde die Doppelionisation von Argon in ultrakurzen Infrarot-Laserimpulsen von wenigen Femtosekunden (10^–15 s) Dauer. Selbst wenn man nur die zwei aktiven Elektronen und den Ionenrumpf betrachtet, hat man hier ein Dreikörperproblem vor sich, das in der Theorie nur numerisch gelöst werden kann. Hinzu tritt die Wechselwirkung mit dem starken Laserfeld. Abb. 1 illustriert den Mechanismus im untersuchten Intensitätsbereich von knapp 10^14 W/cm^2. Dargestellt sind schematisch zwei Elektronen im trichterförmigen Coulomb-Potentialtopf, dem sich das oszillierende Laserfeld wie eine hin und her schwankende schiefe Ebene überlagert. Der zeitliche Verlauf des Feldes ist jeweils durch die gelbe Kurve oben links angegeben.

Im ersten Schritt (a) tunnelt eines der Elektronen durch die Potentialbarriere heraus und wird anschließend vom Laserfeld beschleunigt und unter Energiegewinn zum Mutterion zurückgetrieben. Bei der betrachteten Laserintensität reicht die Energieallerdings nicht aus, um das zweite Elektron aus dem Potentialtopf herauszuheben. Es kann aber auf ein höheres Energieniveau angehoben werden, wobei das erste Elektron wieder in das Atom eingefangen wird und ebenfalls ein oberes Energieniveau besetzt (b). Da zwei Elektronen beteiligt sind, spricht man auch von dielektronischer Rekombination. Solche doppelt angeregten Zustände sind zwar nur schwach gebunden, aber es ist dennoch nicht ganz einfach, daraus beide Elektronen zugleich freizusetzen, da sie sich gegenseitig durch ihre elektrische Abstoßung behindern. Oft fällt eines der Elektronen wieder in einen tieferen Zustand zurück, so dass nur eine einfache Ionisation erfolgt. Im betrachteten Fall hilft aber das Laserfeld, da die Elektronen sich frei über die Barriere bewegen können und nicht durch diese hindurch tunneln müssen.

„Wir haben uns gefragt, wie so ein doppelt angeregter Zustand als Dreikörpersystem im Laserfeld zerfällt und mit welchem zeitlichen Abstand die beiden Elektronen freigesetzt werden“, so Robert Moshammer. „Die Zeiten, um die es dabei geht, liegen im Bereich von Attosekunden (10^–18 s) und die Herausforderung liegt darin, so extrem kurze Vorgänge zu vermessen“. Hierbei hilft den Forschern die Physik selbst, denn die Geschwindigkeit, die das Elektron durch Beschleunigung im Laserfeld erhält, hängt von der Feldstärke zum Zeitpunkt der Freisetzung ab (Abb 2). Die Geschwindigkeit der Elektronen wiederum lässt sich im Experiment mit einem so genannten Reaktionsmikroskop sehr genau bestimmen. Voraussetzung ist aber, dass der Laserimpuls so kurz ist, dass der ganze Vorgang innerhalb nur einer Schwingungsperiode des Laserfeldes abgeschlossen ist, was bei Impulsen von 5 fs Dauer auch erreicht wurde. Die Häufigkeit der gemessenen Geschwindigkeiten der beiden Elektronen lässt sich in einem Diagramm darstellen, worin der Abstand von der Diagonalen der Geschwindigkeitsdifferenz entspricht. Diese wiederum lässt sich in eine Zeitdifferenz übersetzen: Je größer der Abstand der Ereignisse von der Diagonalen umso größer ist die Zeit zwischen der Freisetzung der beiden Elektronen aus dem doppelt angeregten Zustand.

Zum Vergleich mit den experimentellen Daten wurden Modellrechnungen durchgeführt und die Elektronen darin wie klassische Teilchen behandelt. Diese für ein Quantensystem recht grob erscheinende Näherung ist für höher angeregte Zustände gerechtfertigt und liefert brauchbare Ergebnisse. Die beste Übereinstimmung mit dem Experiment ergab sich für die Fälle, wo der zeitliche Abstand etwa 200 Attosekunden betrug. Zudem bestätigt dies die Existenz doppelt angeregter Übergangszustände, durch welche die Doppelionisation erfolgt.

Kontakt:
Dr. Robert Moshammer
Max-Planck-Institut für Kernphysik, Heidelberg
Tel.: (+49)6221-516-281
E-Mail: robert.moshammer (at) mpi-hd.mpg.de

Originalveröffentlichung:
N. Camus, B. Fischer, M. Kremer, V. Sharma, A. Rudenko, B. Bergues, M. Kübel, N. G. Johnson, M. F. Kling, T. Pfeifer, J. Ullrich and R. Moshammer
Attosecond Correlated Dynamics of Two Electrons Passing through a Transition State
Physical Review Letters 108, 073003 (2012)
http://link.aps.org/doi/10.1103/PhysRevLett.108.073003
doi: 10.1103/PhysRevLett.108.073003

Dr. Bernold Feuerstein | Max-Planck-Institut
Weitere Informationen:
http://www.mpi-hd.mpg.de/ullrich/page.php?tag=laser

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MAIUS-1 – erste Experimente mit ultrakalten Atomen im All
24.01.2017 | Leibniz Universität Hannover

nachricht European XFEL: Forscher können erste Vorschläge für Experimente einreichen
24.01.2017 | European XFEL GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie