Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein-Atom-Bit bildet kleinsten Speicher der Welt

14.11.2013
Ein Atom ist ein Bit: Nach diesem Bauprinzip würde man die magnetischen Datenspeicher der Zukunft gerne aufbauen.

Heutzutage braucht man einen Verbund von mehreren Millionen Atomen, damit ein magnetisches Bit so stabil ist, dass Festplattendaten über Jahre sicher sind.


Mittels eines Rastertunnelmikroskops werden einzelne Holmiumatome auf einer Platinoberfläche sichtbar. (Bild: KIT/T. Miyamachi)

Nun konnten Forscher des KIT einen großen Schritt in Richtung Ein-Atom-Bit machen: Sie haben ein einzelnes Atom auf einer Oberfläche so fixiert, dass der magnetische Spin über 10 Minuten stabil blieb, wie sie in der aktuellen Ausgabe des Fachmagazins Nature berichten. (DOI 10.1038/nature12759)

„Ein einzelnes Atom, fixiert auf einer Unterlage, ist meist so empfindlich, dass es nur Bruchteile einer Mikrosekunde (200 Nanosekunden) seine magnetische Ausrichtung beibehält“, erklärt Wulf Wulfhekel vom Karlsruher Institut für Technologie. Zusammen mit Kollegen aus Halle hat er es nun geschafft, diese Zeit um einen Faktor von etwa einer Milliarde auf mehrere Minuten zu verlängern. „Dies öffnet nicht nur das Tor zu dichteren Computerspeichern, sondern könnte auch für den Aufbau von Quantencomputern einen Grundstein legen“, so Wulfhekel. Quantencomputer basieren auf den quantenphysikalischen Eigenschaften von atomaren Systemen und könnten zumindest in der Theorie einen exponentiellen Geschwindigkeitsvorteil gegenüber klassischen Computern besitzen.

In dem aktuellen Experiment setzten die Forscher ein einzelnes Holmium-Atom auf eine Platinunterlage. Bei Temperaturen nahe am absoluten Nullpunkt, bei circa 1 Grad Kelvin, vermaßen sie die magnetische Ausrichtung des Atoms mittels der feinen Spitze eines Rastertunnelmikroskops. Der magnetische Spin sprang erst nach circa zehn Minuten um. „Das System hält seinen einmal eingestellten magnetischen Spin somit rund eine Milliarde mal länger als vergleichbare atomare Systeme“, so Wulfhekel. Für das Experiment wurde ein neuartiges Rastertunnelmikroskop des KIT genutzt. Dank einer speziellen Kühlung für den Temperaturbereich nahe dem absoluten Nullpunkt ist es vibrationsarm und erlaubt lange Messzeiten.

„Um die Spin-Umklapp-Zeiten zu verlängern, haben wir den störenden Einfluss der Umgebung für das Atom ausgeblendet“, erklärt Arthur Ernst vom Max-Planck-Institut für Mikrostrukturphysik, der theoretische Rechnungen für das Experiment beigetragen hat. Normalerweise stoßen die Elektronen der Unterlage und des Atoms rege quantenmechanisch miteinander und destabilisieren den Spin des Atoms in Mikrosekunden oder schneller aus dem Grundzustand. Im Fall von Holmium und Platin bei tiefen Temperaturen werden störende Wechselwirkungen durch die Symmetrieeigenschaften des vorliegenden Quantensystems ausgeschaltet. „Im Grunde sind Holmium und Platin für einander im Bezug auf Spinstreuung unsichtbar“, so Ernst. Mittels externer Magnetfelder ließen sich der Spin des Holmiums aber noch einstellen und so Informationen schreiben. Damit wären die Grundlagen für die Entwicklung kompakter Datenspeicher oder Quantencomputer gelegt.

Stabilizing the magnetic moment of single Holmium atoms by symmetry, T. Miyamachi et al., DOI: 10.1038/nature12759

Weiterer Kontakt:
Kosta Schinarakis, PKM – Themenscout, Tel.: +49 721 608 41956, Fax: +49 721 608 43658, E-Mail: schinarakis@kit.edu

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Thematische Schwerpunkte der Forschung sind Energie, natürliche und gebaute Umwelt sowie Gesellschaft und Technik, von fundamentalen Fragen bis zur Anwendung. Mit rund 9000 Mitarbeiterinnen und Mitarbeitern, darunter knapp 6000 in Wissenschaft und Lehre, sowie 24 000 Studierenden ist das KIT eine der größten Forschungs- und Lehreinrichtungen Europas. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Monika Landgraf | Karlsruher Institut für Technolo
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie