Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

ALMA entdeckt überraschende Spiralstrukturen um einen sterbenden Stern

11.10.2012
Pressemitteilung der Europäischen Südsternwarte (Garching) - Astronomen haben mit dem Atacama Large Millimeter/submillimeter Array (ALMA)eine Spiralstruktur in einer äußeren Hülle entdeckt, die den sterbenden Riesenstern R Sculptoris umgibt.

Die überraschende Beobachtung in Kombination mit dem Nachweis der weiter außen liegenden Hülle um einen roten Riesenstern ist eine astronomische Premiere. Die Spiralstruktur dürfte auf einen unsichtbaren Begleiter zurückgehen, der den Roten Riesen umkreist. Die neuen Ergebnisse erscheint diese Woche in der Fachzeitschrift Nature – als eine der ersten Veröffentlichungen aus der frühen Phase wissenschaftlicher Beobachtungen mit ALMA.


ALMA beobachtet eine seltsame Spirale um den roten Riesenstern R Sculptoris
Bild: ALMA (ESO/NAOJ/NRAO)

Ein Astronomenteam hat zu seiner Überraschung eine Spiralstruktur in dem Gas um den roten Riesenstern R Sculptoris entdeckt [1][2][3], die darauf hin deutet, dass ein zuvor unentdeckter Begleiter den Stern umkreist [4]. Auch die Menge des von dem Roten Riesen ausgestoßenen Materials erwies sich als deutlich größer als erwartet ausgestoßen. Die Beobachtungen wurden mit dem Atacama Large Millimeter/submillimeter Array (ALMA) vorgenommen, dem leistungsfähigsten Millimeter/Submillimeter-Teleskop der Welt.

„Zwar konnten zuvor bereits Schalen aus ausgestoßenem Material um diese Art von Sternen beobachtet werden, aber wir sind die ersten, die so eine Spirale aus Materie beobachtet haben, die von dem Stern ausgeht und die von einer noch deutlich größeren Hülle umgeben ist”, erklärt Matthias Maercker von der ESO und vom Argelander-Institut für Astronomie der Universität Bonn, der Erstautor der Studie, in der die Ergebnisse veröffentlicht werden.

Rote Riesensterne wie R Sculptoris geben große Mengen an Materie in den umgebenden Weltraum ab. Sie sind damit die Hauptlieferanten des Gases und des Staubs, die den Großteil des Rohmaterials für die Bildung von Planetensystemen um neue Generationen von Sternen, und damit auch für das Leben darstellt

Das Ergebnis stammt aus der Frühphase wissenschaftlicher Beobachtungen mit ALMA („Early Science phase“). Doch selbst in dieser Frühphase übertrifft die Leistung der Anlage deutlich die anderer Submillimeterobservatorien. Zuvor gewonnene Datensätze zeigten zwar eine kugelförmige Hülle um R Sculptoris, aber weder die Spiralstruktur noch Hinweise auf einen Begleiter.

„Während unserer Beobachtungen mit ALMA beobachtet haben, waren noch nicht mal die Hälfte der vorgesehenen Antennen vor Ort. Man stelle sich vor, was ALMA leisten können wird, wenn die Anlage ab 2013 komplett aufgebaut ist!" ergänzt Wouter Vlemmings von der Chalmers University of Technology in Schweden, einer der Ko-Autoren der Studie.

Kurz vor dem Ende ihres Lebens werden Sterne mit einer Masse von bis zu acht Sonnenmassen zu Roten Riesen und verlieren dann einen Großteil ihrer Masse in Form von starken Sternwinden. Während der Rote-Riesen-Phase finden außerdem zusätzlich regelmäßig sogenannte thermische Pulse statt: kurze, explosive Phasen, während derer in einer Hülle um den Zentralbereich des Sterns Heliumkerne zu Kohlenstoffkernen verschmelzen. Während jedes thermischen Pulses erhöht sich die Rate, mit der Materie von der Sternoberfläche in den umgebenden Raum strömt. So entstehen um den Stern herum ausgedehnte Hüllen aus Gas und Staub. Nach dem Puls geht die Massenverlustrate auf ihren normalen Wert zurück.

Thermische Pulse treten etwa alle 10.000 bis 50.000 Jahre auf und dauern jeweils nur wenige hundert Jahre. Die neuen Beobachtungen von R Sculptoris zeigen, dass der Stern vor gut 1800 Jahren seinen letzten thermischen Puls erlebte, der etwa 200 Jahre währte. Der Begleitstern brachte den Sternwind von R Sculptoris dann in die jetzt beobachtete Spiralform.

„Dadurch, dass ALMA in der Lage ist, derart feine Details aufzulösen, können wir viel besser als zuvor nachvollziehen, was mit dem Stern vor, während und nach dem thermischen Puls passiert ist. Die Form der Hülle und der Spiralstruktur liefern uns die dafür nötigen Informationen”, ergänzt Maercker. “Wir haben zwar durchaus damit gerechnet, dass ALMA uns einen ganz neuen Blick auf das Universum ermöglichen wird. Aber dass wir bereits mit einer der ersten Beobachtungen überhaupt völlig unerwartete neue Dinge zu Gesicht bekommen, ist schon etwas ganz besonderes.”

Um die Entstehung der beobachteten Strukturen rund um R Sculptoris nachvollziehen zu können, hat das Astronomenteam Computersimulationen durchgeführt, die die Entwicklung eines Doppelsternsystems modellieren [5]. Die resultierenden Modelle passen erstaunlich gut zu den neuen ALMA-Daten.

"Es ist eine beachtliche Herausforderung, all die Details, die ALMA liefert, auch theoretisch beschreiben zu können. Aber mit unseren Computermodellen sind wir auf dem richtigen Weg. ALMA hat uns einen hervorragenden Einblick geliefert, wie sich diese Sterne verhalten – und damit auch, wie sich unsere Sonne in ein paar Milliarden Jahren entwickeln könnte", erläutert Shazrene Mohamed vom Argelander-Institut für Astronomie in Bonn und vom South African Astronomical Observatory in Südafrika, eine Ko-Autorin der Studie.

„Bald können uns ALMA-Beobachtungen von Sternen wie R Sculptoris dabei helfen nachzuvollziehen, wie die chemischen Elemente, aus denen wir Menschen bestehen, auf einen Planeten wie die Erde gelangt sind. Und auch über die ferne Zukunft unseres eigenen Heimatsterns dürfte uns ALMA einiges verraten”, schließt Matthias Maercker.

Endnoten

[1] R Sculptoris ist ein Beispiel für einen Stern auf dem sogenannten asymptotischen Riesenast (englisch asymptotic giant branch, kurz AGB). Solche Sterne haben ursprünglich Massen zwischen 0,8 und 8 Sonnenmassen, befinden sich mittlerweile aber im letzten Stadium ihres Sternlebens. Es handelt sich um kühle rote Riesensterne, die in Form von heftigen Sternwinden fortwährend beträchtliche Mengen an Materie verlieren. Üblicherweise ist die Helligkeit solcher Sterne langperiodisch veränderlich. Die Sterne enthalten einen vergleichsweise kleinen Zentralbereich aus Kohlenstoff und Sauerstoff, der von Schalen umgeben ist, in denen zum einen Wasserstoff, zum anderen Heliumkerne miteinander verschmelzen. Außen schließt sich an diese Schalen eine riesige, ausgedehnte Hülle an, in denen die Materie durch Konvektion durchmischt wird. Auch die Sonne wird sich einmal zu einem solchen AGB-Stern entwickeln.

[2] Die ausgestoßene Hülle um AGB-Sterne besteht aus Gas und aus Staubkörnern. Der Staub kann aussfindig gemacht werden, indem man im fernen Infrarot oder bei Millimeter- und Submillimeterwellenlängen nach der Wärmestrahlung sucht, die er abgibt. Die vom CO-Molekül ausgesendete Strahlung im Millimeterwellenlängenbereich ermöglicht es den Astronomen, hochaufgelöste Karten des Gases zu erstellen, das durch den starken Sternwind der AGB-Sterne nach außen gerissen wird. Derartige Beobachtungen sind also hervorragend geeignet, um die Verteilung des Gases rund um diese Objekte zu ermitteln. Dank der hohen Empfindlichkeit von ALMA ist es möglich, den Bereich, in dem der Staub auskondensiert, sowie ganz allgemein die räumliche Struktur des Materials in der Umgebung der AGB-Sterne mit einer Auflösung von besser als 0,1 Bogensekunden direkt abzubilden.

[3] Eine ähnliche Spirale, allerdings ohne ohne die umgebende Hülle, konnte bereits mit dem NASA/ESA Hubble-Weltraumteleskop um den Stern LL Pegasi beobachtet werden. Anders als bei den neuen ALMA-Beobachtungen konnte aus diesen Daten allerdings nicht die gesamte Struktur dreidimensional untersucht werden. Außerdem weisen die Hubble-Daten den Staub und nicht wie ALMA die Molekülemission nach.

[4] Nicht direkt nachgewiesene Begleiter eignen sich ebenfalls, um die seltsamen Formen noch weiter entwickelter Objekte zu erklären: der planetarischen Nebel. Nach der AGB-Phase beenden Sterne mit kleinen und mittleren Massen (von ca. 0,8 bis 8 Sonnenmassen) ihr Leben als eben solche. Es handelt sich dabei um die Überreste der Gashülle, die während der AGB-Phase ausgestoßen wurde und die nun von der Ultraviolettstrahlung des zentralen Weißen Zwerges, dem Überrest des Zentralbereichs des ehemaligen Sterns, ionisiert und zum Leuchten angeregt werden. Viele planetarische Nebel haben sehr komplexe und zudem völlig unterschiedliche Morphologien. Doppelsternsysteme, Scheibensysteme oder Magnetfelder sind mögliche Erklärungen, um die beobachtete Formenvielfalt planetarischer Nebel zu erklären.

[5] Das Modellsternsystem besteht aus dem AGB-Stern, der einen thermischen Puls durchläuft, als Hauptkomponente und einem kleineren Begleitstern. Der Abstand zwischen den beiden Sternen betrug in der Simulation das 60-fache des Abstands Erde-Sonne, die Gesamtmasse des Systems zwei Sonnenmassen. Die Umlaufdauer beträgt unter diesen Umständen 350 Jahre.

Zusatzinformationen

Die hier vorgestellten Forschungsergebnisse von Matthias Maercker et al. erscheinen demnächst unter dem Titel “Unexpectedly large mass loss during the thermal pulse cycle of the red giant star R Sculptoris” in der Fachzeitschrift Nature.

Die beteiligten Wissenschaftler sind M. Maercker (ESO und Argelander-Institut für Astronomie der Universität Bonn), S. Mohamed (Argelander-Institut für Astronomie und South African Astronomical Observatory, Südafrika), W. H. T. Vlemmings (Onsala Space Observatory, Chalmers University of Technology, Onsala, Schweden), S. Ramstedt (Argelander-Institut für Astronomie), M. A. T. Groenewegen (Royal Observatory of Belgium, Brüssel, Belgien), E. Humphreys (ESO), F. Kerschbaum (Institut für Astronomie der Universität Wien, Österreich), M. Lindqvist (Onsala Space Observatory), H. Olofsson (Onsala Space Observatory), C. Paladini (Institut für Astronomie der Universität Wien), M. Wittkowski (ESO), I. de Gregorio-Monsalvo (Joint ALMA Observatory, Chile) und L. A. Nyman (Joint ALMA Observatory).

Im Jahr 2012 feiert die Europäische Südsternwarte ESO (European Southern Observatory) das 50-jährige Jubiläum ihrer Gründung. Die ESO ist die führende europäische Organisation für astronomische Forschung und das wissenschaftlich produktivste Observatorium der Welt. Getragen wird die Organisation durch ihre 15 Mitgliedsländer: Belgien, Brasilien, Dänemark, Deutschland, Finnland, Frankreich, Italien, die Niederlande, Österreich, Portugal, Spanien, Schweden, die Schweiz, die Tschechische Republik und das Vereinigte Königreich. Die ESO ermöglicht astronomische Spitzenforschung, indem sie leistungsfähige bodengebundene Teleskope entwirft, konstruiert und betreibt. Auch bei der Förderung internationaler Zusammenarbeit auf dem Gebiet der Astronomie spielt die Organisation eine maßgebliche Rolle. Die ESO betreibt drei weltweit einzigartige Beobachtungsstandorte in Nordchile: La Silla, Paranal und Chajnantor. Auf dem Paranal betreibt die ESO mit dem Very Large Telescope (VLT) das weltweit leistungsfähigste Observatorium für Beobachtungen im Bereich des sichtbaren Lichts und zwei Teleskope für Himmelsdurchmusterungen: VISTA, das größte Durchmusterungsteleskop der Welt, arbeitet im Infraroten, während das VLT Survey Telescope (VST) für Himmelsdurchmusterungen ausschließlich im sichtbaren Licht konzipiert ist. Die ESO ist der europäische Partner für den Aufbau des Antennenfelds ALMA, das größte astronomische Projekt überhaupt. Derzeit entwickelt die ESO ein Großteleskop mit 39 Metern Durchmesser für Beobachtungen im Bereich des sichtbaren und Infrarotlichts, das einmal das größte optische Teleskop der Welt werden wird: das European Extremely Large Telescope (E-ELT).

Das Atacama Large Millimeter/submillimeter Array (ALMA) ist eine internationale astronomische Einrichtung, die gemeinsam von Europa, Nordamerika und Ostasien in Zusammenarbeit mit der Republik Chile getragen wird. Von europäischer Seite aus wird ALMA über die Europäische Südsternwarte (ESO) finanziert, in Nordamerika von der National Science Foundation (NSF) der USA in Zusammenarbeit mit dem kanadischen National Research Council (NRC) und dem taiwanesischen National Science Council (NSC), und in Ostasien von den japanischen National Institutes of Natural Sciences (NINS) in Kooperation mit der Academia Sinica (AS) in Taiwan. Bei Entwicklung, Aufbau und Betrieb ist die ESO federführend für den europäischen Beitrag, das National Radio Astronomy Observatory (NRAO), das seinerseits von Associated Universities, Inc. (AUI) betrieben wird, für den nordamerikanischen Beitrag und das National Astronomical Observatory of Japan für den ostasiatischen Beitrag. Dem Joint ALMA Observatory (JAO) obliegt die übergreifende Projektleitung für den Aufbau, die Inbetriebnahme und den Beobachtungsbetrieb von ALMA.

Das ALMA-Observatorium wird am 13. März 2013 offiziell eingeweiht werden.

Kontaktinformationen

Carolin Liefke
ESO Science Outreach Network - Haus der Astronomie
Heidelberg, Deutschland
Tel: 06221 528 226
E-Mail: eson-germany@eso.org
Matthias Maercker
ESO ALMA Cofund Fellow
Argelander Institute for Astronomy, University of Bonn, Germany
Tel: +49 228 735768
Handy: +49 176 706 21 632
E-Mail: maercker@astro.uni-bonn.de
Wouter Vlemmings
Onsala Space Observatory
Chalmers University of Technology, Sweden
Tel: +46 31 772 5509
Handy: +46 733 544 667
E-Mail: wouter.vlemmings@chalmers.se
Shazrene S. Mohamed
Postdoctoral Research Fellow
South African Astronomical Observatory, Cape Town, South Africa
Tel: +27 21 447 0025 ext 7025
Handy: +27 729 661 707
E-Mail: shazrene@saao.ac.za
Douglas Pierce-Price
Public Information Officer, ESO
Garching bei München, Germany
Tel: +49 89 3200 6759
E-Mail: dpiercep@eso.org

Carolin Liefke | ESO Science Outreach Network
Weitere Informationen:
http://www.eso.org

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften