Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Den Alien-Molekülen auf der Spur

04.11.2009
Wenn in Filmen oder Romanen Außerirdische auftauchen, schauen sie uns Menschen oft verblüffend ähnlich. Aber nicht nur Science-Fiction-AutorInnen, auch WissenschafterInnen fällt es schwer, sich Leben vorzustellen, das auf völlig anderen Prinzipien beruht als jenes auf der Erde.

Eine neue, international vernetzte Forschungsplattform unter der Leitung von Maria Firneis, Astronomin der Universität Wien, will den astronomischen "Geozentrismus" aufbrechen und die Suche nach Spuren von Leben im All um neue Parameter erweitern.

"Sowohl in der Astronomie als auch in der Biologie herrscht das - im Grunde geozentrische - Paradigma, dass Leben nur in Zusammenhang mit Wasser als Lösungsmittel und Stoffwechselprozessen auf Kohlenstoffbasis entstehen kann, wie es eben auf der Erde der Fall war", sagt Maria Firneis vom Institut für Astronomie.

Was aber, wenn sich außerirdische Lebensformen - "und wir sprechen hier nicht von Marsmännchen oder irgendwelchen intelligenten Spezies, sondern von primitiven Systemen wie Makromolekülen", betont die Astronomin - nicht in Wasser, sondern in alternativen Lösungsmitteln wie Ammoniak, Formamid oder Schwefelsäure entwickelt haben? Wenn sie "exotisch" sind und nicht auf Kohlenstoff, sondern auf anderen chemischen Elementen wie beispielsweise Stickstoff basieren? Diese Fragen stehen im Zentrum der neuen universitären Forschungsplattform "Alternative Solvents as a Basis for Life supporting Zones in (Exo-) Planetary Systems" - kurz Exolife -, die Maria Firneis in Kooperation mit Regina Hitzenberger von der Fakultät für Physik leitet.

Lebensunterstützende Zonen
Die dreijährige Plattform will dem astrobiologischen Geozentrismus entgegenwirken und neue Parameter für die Suche nach Anzeichen für Leben auf Exo-Planeten - Planeten außerhalb unseres Sonnensystems - festlegen. Bisher beschränkte sich die Jagd nach den "Alien-Molekülen" auf sogenannte "habitable Zonen": Damit ist jener Bereich innerhalb eines Exo-Sonnensystems gemeint, in dem sich ein Planet befinden muss, damit auf seiner Oberfläche flüssiges Wasser vorkommen kann.

"Aber wenn auch andere Flüssigkeiten die Entstehung von Leben ermöglichen, dann vergrößert sich die Zone, in der wir danach suchen können", sagt Johannes Leitner von der Forschungsplattform. Er ist im Rahmen von Exolife gemeinsam mit Firneis für die Bereiche Astrobiologie und Planetologie zuständig ist: "Wir haben für diese Erweiterung der klassischen habitablen Zone den Begriff 'Life supporting Zone' etabliert."

Drei Fragen: Welche Lösungsmittel ...
Drei zentrale Punkte sollen im Rahmen von Exolife geklärt werden - ihre Beantwortung reicht jedoch weit über die Astronomie hinaus in viele andere Fachgebiete wie Evolutionsbiologie, Himmelsmechanik oder Physik. Erstens wollen Firneis und Leitner im interdisziplinären Dialog herausfinden, welche Lösungsmittel astronomisch überhaupt in Frage kommen: "Das können zum Beispiel Ammoniak, Ethan, Formamid, Methan oder auch Wasser-Ammoniak-Gemische sein."
... welche Verbindungen ...
Vor allem die EvolutionsbiologInnen im Team betrifft die zweite zentrale Frage, nämlich jene nach der chemischen Zusammensetzung exotischer Lebensformen: "Falls sich in alternativen Lösungsmitteln überhaupt Makromoleküle entwickeln können, müssen sie wie gesagt nicht unbedingt auf Kohlenstoff basieren", erklärt Leitner, der vermutet, dass es solche Exoten auch auf der Erde geben könnte.
... und wo?
Dass man die Suche nach dem Unbekannten immer dort beginnen muss, wo man sich zumindest ein bisschen auskennt, meint auch Maria Firneis: "Unsere dritte Forschungsfrage lautet - und hier sind vor allem wir AstronomInnen und die PhysikerInnen gefragt: Wo könnte es solches exotisches Leben geben? Im Moment sind wir dabei, mögliche Life supporting Zones in unserem eigenen Sonnensystem zu identifizieren. In Frage kommen der Saturnmond Titan, der Jupitermond Europa sowie die Atmosphäre der Venus."
"Looking for life, as we do not know at present"
Letztendliches Ziel der Forschungen im Rahmen der Plattform Exolife ist es, sogenannte Biomarker - Merkmale, die die Atmosphäre eines potenziell "lebenstauglichen" Exo-Planetens aufweisen müsste - zu identifizieren. Sie ermöglichen es zukünftigen Weltraummissionen wie dem neuen europäischen Venussatelliten EVE (European Venus Explorer), an dessen Konzeption und Prototypentwicklung Firneis und Leitner maßgeblich beteiligt sind, gezielt nach den "Alien-Molekülen" Ausschau zu halten.
Kontakt:
Ao. Univ.-Prof. Dr. Maria Firneis
Mag. Johannes Leitner
Institut für Astronomie
Universität Wien
1180 Wien, Türkenschanzstraße 17
T +43-1-4277-518 50, 234 01
M +43-676-622 22 60 (Johannes Leitner)
maria.firneis@univie.ac.at
johannes.leitner@univie.ac.at
Rückfragehinweis:
Mag. Alexandra Frey
Öffentlichkeitsarbeit
Universität Wien
1010 Wien, Dr.-Karl-Lueger-Ring 1
T +43-1-4277-175 31
M +43-664-602 77-175 31
alexandra.frey@univie.ac.at

Alexandra Frey | idw
Weitere Informationen:
http://www.univie.ac.at/175

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Internationales Forscherteam entdeckt kohärenten Lichtverstärkungsprozess in Laser-angeregtem Glas
25.09.2017 | Universität Kassel

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops