Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

1, 2, 3, viele – wie aus wenigen Teilchen ein ‚Haufen‘ wird

25.10.2013
Heidelberger Physiker beobachten im Experiment die Entstehung eines Vielteilchensystems

Wie groß muss ein Ensemble von Teilchen sein, damit die Frage nach der genauen Teilchenzahl unwichtig wird?

Heidelberger Physikern ist es in Experimenten mit ultrakalten Atomen gelungen, den Übergang zu einem durch unendlich viele Teilchen beschriebenen System zu beobachten. Dieses physikalische Problem ist in der Philosophie als sogenanntes Sorites-Paradoxon bekannt. Im Mittelpunkt steht dabei die Frage, ab wann eine Ansammlung von Elementen einen ‚Haufen‘ bildet.

Durchgeführt wurden die Experimente von Wissenschaftlern der Universität Heidelberg unter Leitung von Prof. Dr. Selim Jochim am Max-Planck-Institut für Kernphysik. Die Veröffentlichung der Forschungsergebnisse erfolgte in „Science“.

„Systeme, die aus vielen Teilchen bestehen, lassen sich in der Regel nur sehr schwer mikroskopisch exakt beschreiben. Wissenschaftler arbeiten daher häufig mit effektiven Theorien, mit denen nicht mehr die einzelnen Teilchen wie zum Beispiel Gasmoleküle in der Luft betrachtet werden, sondern makroskopische Größen wie Druck oder Temperatur“, erläutert Selim Jochim. Ausgangspunkt der aktuellen Experimente war ein von den Heidelberger Forschern speziell präpariertes System, das so klein war, dass es noch exakt beschrieben werden konnte.

Beginnend mit einem Atom erhöhten die Wissenschaftler nun Atom für Atom die Anzahl der Teilchen. Dabei wurde immer wieder die Energie des gesamten Systems gemessen. Die Untersuchungen zeigten schließlich, dass für das hier untersuchte System bereits bei sehr wenigen Atomen die für ein unendlich großes System hergeleitete Theorie anwendbar wird.

„Dies können wir als direkt beobachtbaren Übergang von einem Wenigteilchensystem zu einem Vielteilchensystem bezeichnen. Bereits ab etwa vier Atomen ist, in einfachen Worten gesprochen, das von uns untersuchte System ein Haufen‘ im Sinne des Sorites-Paradoxon“, so der Heidelberger Physiker.

Die jetzt veröffentlichten Forschungsergebnisse basieren auf Vorarbeiten der Heidelberger Physiker, die im Jahr 2011 ebenfalls in „Science“ publiziert wurden: Den Wissenschaftlern um Selim Jochim ist es vor zwei Jahren gelungen, das für die aktuellen Untersuchungen verwendete System reproduzierbar in allen seinen Eigenschaften, zu denen die exakte Teilchenzahl, deren Bewegungszustand und ihre Wechselwirkung gehören, zu kontrollieren. „Bis heute sind wir das weltweit einzige Forscherteam, das derartige Systeme präparieren kann“, betont Prof. Selim Jochim. „Die nun publizierten Ergebnisse verwirklichen zum ersten Mal unsere Vision, mit diesen Experimenten einen tiefen Einblick in die Natur fundamentaler Wenigteilchensysteme zu gewinnen, um beispielsweise Atomkerne besser zu verstehen.“

Originalpublikation:
A. N. Wenz, G. Zürn, S. Murmann, I. Brouzos, T. Lompe, S. Jochim: From Few to Many: Observing the Formation of a Fermi Sea One Atom at a Time. Science, Vol. 342, Seite 457, 25. Oktober 2013; doi: 10.1126/science.1240516
Hinweis an die Redaktionen:
Eine Infografik ist über die Pressestelle erhältlich.
Kontakt:
Prof. Dr. Selim Jochim
Physikalisches Institut
Telefon (06221) 54-19472
jochim@uni-heidelberg.de
Kommunikation und Marketing
Pressestelle
Telefon (06221) 54-2311

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Spin-Strom aus Wärme: Neues Material für höhere Effizienz
20.11.2017 | Universität Bielefeld

nachricht cw-Wert wie ein Lkw: FH Aachen testet Weihnachtsbaum im Windkanal
20.11.2017 | FH Aachen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

500 Kommunikatoren zu Gast in Braunschweig

20.11.2017 | Veranstaltungen

VDI-Expertenforum „Gefährdungsanalyse Trinkwasser"

20.11.2017 | Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Künstliche neuronale Netze: 5-Achs-Fräsbearbeitung lernt, sich selbst zu optimieren

20.11.2017 | Informationstechnologie

Tonmineral bewässert Erdmantel von innen

20.11.2017 | Geowissenschaften

Hemmung von microRNA-29 schützt vor Herzfibrosen

20.11.2017 | Biowissenschaften Chemie