Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Medtec 2015: Neuartiger Gewebeersatz aus Hightech-Fasern

01.04.2015

Die regenerative Medizin nutzt körpereigene Zellen, um verletztes Gewebe zu heilen. Fraunhofer-Forscher setzen auf zellfreie Trägersubstrate, die sich erst nach dem Einsetzen in den Patienten selbst besiedeln. Proteine locken die Zellen an, die auf den Substraten anwachsen. Muster der neuen Implantate sind auf der Messe Medtec zu sehen.

Sind Organe oder Gewebe eines Menschen irreparabel beschädigt, kann dem Patienten meist nur durch ein Spenderorgan oder ein Implantat aus Kunststoff geholfen werden.


Das Vlies aus Hightech-Fasern ersetzt menschliches Gewebe.

© Fraunhofer IGB

Doch oftmals stößt der Körper den Ersatz ab. Abhilfe schaffen Implantate aus körpereigenen Zellen, auf die der menschliche Organismus nicht sensibel reagiert. Um wachsen zu können, benötigen die Zellen eine Art Unterlage, ein strukturelles Gerüst.

Forscher am Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB in Stuttgart entwickeln solche Trägersubstrate – auch Scaffolds genannt – gemeinsam mit dem Universitätsklinikum Tübingen und der UCLA, University of California, Los Angeles durch Elektrospinnen.

Bei diesem Verfahren werden synthetische und biologisch abbaubare Polymere wie beispielsweise Polylaktid elektrisch zu Fasern versponnen. Sie vernetzen sich zu einer Art Vlies, einer dreidimensionalen Matrix.

Zellen im Körper kultivieren

Hierbei wählen die Wissenschaftler einen besonderen Ansatz: Während des Elektro-spinnens mischen sie dem Polymer Proteine bei, die sie ebenfalls in die hauchdünnen Fasern einspinnen. Die derart ausgestatteten Trägersubstrate sollen – nachdem sie dem Patienten eingesetzt wurden – körpereigene Zellen binden.

»Durch das Elektrospinnen können wir ein zellfreies Trägersubstrat implantieren, das erst nach dem Einsetzen im Körper von Zellen besiedelt wird. Spezielle Proteine haben die Fähigkeit, spezifische Zellen anzulocken, die dann auf dem Scaffold anwachsen. Je nach gewähltem Protein soll sich Herzgewebe bilden oder krankes Gewebe regeneriert werden«, erläutert Dr. Svenja Hinderer, Wissenschaftlerin am IGB in Stuttgart.

Die Trägersubstrate werden wie dünne Häutchen flach gesponnen und in der gewünschten Größe zugeschnitten. Soll beispielsweise ein geschädigter Herzmuskel behandelt werden, werden die Scaffolds – je nach Größe des verletzten Bereichs – wie ein Tuch über den kranken Muskel gelegt. Im menschlichen Organismus lösen sich die Polymerfasern innerhalb von etwa 48 Monaten auf. Die Zellen, die währenddessen an die Proteine andocken, erhalten durch die Trägerstruktur eine heimische Umgebung. Sie produzieren ihre eigene Matrix und stellen die Funktion des Gewebes wieder her.

Erfolgreiche Tests im Bioreaktor

Sowohl in Laborversuchen als auch in Tests im Bioreaktor verzeichneten die Forscher bereits Erfolge. So konnten sie nachweisen, dass Tracheazellen der Luftröhre, die in vitro schwer kultivierbar sind, sich an das Protein Decorin anheften und anwachsen. Ein weiteres Protein – der Wachstumsfaktor SDF-1 – bindet spezielle Stammzellen, die Progenitorzellen. Diese werden für den Aufbau von Herzklappen und die Neubildung von Herzmuskelzellen nach einem Infarkt benötigt.

»Unsere durch Elektrospinning hergestellten Implantate weisen die mechanischen und strukturellen Eigenschaften einer normalen Herzklappe auf. Wie das Original schließen und öffnen sie sich bei Versuchen im Bioreaktor bei einem Blutdruck von 120 zu 80 mmHg«, sagt Hinderer. Im nächsten Schritt wollen die Forscherin und ihre Kollegen die mit Proteinen ausgerüsteten Scaffolds im Tiermodell testen.

Die Hybride aus Polymer- und Proteinfasern lassen sich in großen Mengen herstellen und lagern. Das Team vom IGB arbeitet daran, mit den neuartigen Trägersubstraten eine schnell einsetzbare Alternative zu herkömmlichen Klappenmodellen zur Marktreife zu bringen.

»Wie lange das dauern wird, ist aber nicht vorhersehbar«, sagt die Forscherin. Der Vorteil: Zellfreie Implantate müssen nur als Medizinprodukt, jedoch nicht als Arzneimittel für neuartige Therapien zugelassen werden − ein zeitlicher Vorteil. »Die Zulassung von medizinischen Produkten, die bereits vor der Implantation mit menschlichen Zellen ausgerüstet sind, ist sehr langwierig und teuer«, so Hinderer.

Vom 21. bis 23. April präsentieren die Forscher auf der Messe Medtec in Stuttgart Muster der polymeren Scaffolds am Fraunhofer-Gemeinschaftstand (Halle 7, Stand 7B04/7B10). Auch ein Bioreaktor zum Kultivieren von Zellen auf diesen Substraten wird gezeigt.

Dr. rer. nat. Claudia Vorbeck | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2015/April/neuartiger-gewebeersatz-aus-hightech-fasern.html

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"
24.05.2017 | Universität Ulm

nachricht Neue Prozesstechnik ermöglicht Produktivitätssteigerung mit dem Laser
18.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften