Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

JEC 2016: Leichtbauteile schneller und energieeffizienter fertigen

01.03.2016

Kunststoff mit Infrarotstrahlung im Werkzeug schmelzen

Beim Konsolidieren von kohlenstofffaserverstärkten Kunststoffen (CFK) verbinden sich Einzelschichten aus Fasern und Kunststoff unter Druck und hoher Temperatur zu einer homogenen Platte. Fraunhofer-Forscher haben ein Verfahren entwickelt, das schnell und energieeffizient ist und sich auch für kleinere Stückzahlen sowie Hochtemperaturkunststoffe eignet: Sie bestrahlen CFK unter Vakuum direkt mit Infrarotstrahlung.


© Foto Fraunhofer ICT

Kohlenstofffasern und erhitzter Kunststoff verbinden sich unter Druck zu einer homogenen CFK-Platte. Mit Infrarotstrahlung unter Vakuum geht das schnell und energieeffizient.

In heutigen Anlagen zur CFK-Fertigung kommen häufig große, kostenintensive Anlagen zum Einsatz. Sie pressen den aufgeschmolzenen Kunststoff zwischen Verstärkungsfasern aus Kohlenstoff oder Glas. Der Kunststoff wird dabei nur indirekt – über die massiven Presswerkzeuge – erhitzt. Die Werkzeuge müssen bewegt, bei variothermer Prozessführung zyklisch aufgeheizt und wieder abgekühlt werden.

Dabei wird prozessabhängig viel Energie und Zeit benötigt. Durch die zum Teil hohen Investitionskosten für Pressen und andere Großanlagen sind kleinere und mittlere Fertigungszahlen häufig nicht rentabel. Doch hierfür gibt es eine Alternative: Forscher des Fraunhofer-Instituts für Chemische Technologie ICT in Pfinztal erhitzen CFK direkt unter Vakuum mit Infrarotstrahlung.

Die Energie wirkt dort, wo sie gebraucht wird. Sofort. Für die Werkzeugwand fanden die Forscher ein Material, das die Infrarotstrahlung im gewünschten Wellenlängenbereich durchlässt und gleichzeitig fast keine eigene Wärmedehnung aufweist. Üblicherweise dauern Vakuum-basierte variotherme Fertigungsprozesse je nach Dicke des Bauteils zwischen 30 Minuten und mehreren Stunden. Mit dem Ansatz des ICT geht das unter 60 Sekunden.

»Unser Verfahren ist schneller, wirtschaftlicher und energieeffizienter als der aktuelle Stand der Technik«, sagt Sebastian Baumgärtner, Maschinenbauingenieur am baden-württembergischen Institut. Die Verarbeitung im Vakuum schont das Material. Der Kunststoff oxidiert nicht wie in offenen Verfahren. Eingeschlossene Luft und mögliche Abgase werden abgesaugt. Der Prozess läuft sehr stabil und ist einfach zu nutzen. »Um CFK zu erhitzen eignen sich bei unserem Ansatz alle elektromagnetischen Strahlen, also auch Mikrowellenstrahlen«, erklärt Baumgärtner. Die Industrie spart Energie, Kosten, Verbrauchsmaterialien und kann schneller fertigen. Das Verfahren ist sowohl für Groß- als auch für Kleinserien geeignet. »Es profitieren insbesondere kleinere und mittelgroße Unternehmen, die sich keine teure Anlagentechnik leisten wollen«, präzisiert Baumgärtner.

Exponat auf der JEC

Auf einer Testanlage fertigen die Forscher mit dem Verfahren 40 x 40 Zentimeter große CFK-Platten. Ähnlich große Teile befinden sich bereits in Sportartikeln oder Automobilteilen. »Unsere Anlage passt in einen normalen Fertigungsbereich«, veranschaulicht Baumgärtner. Im Gegensatz zu großen Pressen fallen Ober- und Unterbau sowie ein spezielles Fundament weg. Die Wissenschaftler stellen das Projekt auf der Fachmesse für Verbundwerkstoffe JEC vom 8. bis 10. März in Paris vor (Pavillion 5A, Stand E70).

Die Anlage fertigt verzugsfreie Platten. »Das ist eine große Herausforderung beim Fertigen von CFK. Wir heizen und kühlen symmetrisch, nutzen eine wärmedehnungsfreie Werkzeugwand und arbeiten mit relativ geringem Prozessdruck, um den ungewollten Quetschfluss zu vermeiden«, sagt Baumgärtner. Durch die glatte Oberfläche der Werkzeugwand entsteht zudem eine nahezu spiegelnde CFK-Platten­­­ober­­fläche. Das ist im finalen Bauteil insbesondere für Anwendungen im Sichtbereich sehr vorteilhaft.

Der Kunststoff erwärmt sich sofort nach Anschalten der Infrarotstrahler. Wieviel Energie genau eingespart wird, können die Wissenschaftler noch nicht sagen. »Noch fehlen uns die exakten Vergleichszahlen. Der Effekt wird aber deutlich sein, da keine großen thermischen Massen aufgeheizt und wieder abgekühlt werden müssen, wie das beim Pressverfahren der Fall ist«, ergänzt der Forscher.

In Autos, Flugzeugen und Sportartikeln

Carbonfasern sind dünner als ein menschliches Haar. Als Kunststoffe für CFK dienen in neuen Entwicklungen häufig Thermoplaste. Sie sind mehrfach aufschmelzbar und können vollständig wiederverwertet werden. Fasern und Kunststoff werden Schicht für Schicht übereinander gestapelt bis die gewünschte Bauteildicke erreicht ist. Hitze und Druck bringen Fasern und geschmolzenen Kunststoff zusammen. Besondere Herausforderung ist es, die Platten ohne Fehlstellen und Lufteinschlüsse zu fertigen, ohne dass die Fasern verschoben werden. Unidirektionales CFK ist in Faserrichtung steif und senkrecht dazu flexibel. So lassen sich über eine spezifische Anordnung der Lagen Bauteile mit individuell einstellbaren Eigenschaften fertigen. CFK ist nicht mehr nur für Raumfahrt oder Formel 1 interessant. Heute wird es in Autos, Flugzeugen und Sportartikeln eingesetzt.

Kontakt
Dr. Stefan Tröster

Fraunhofer-Institut für Chemische Technologie ICT
Joseph-von-Fraunhofer-Straße 7
76327 Pfinztal

Telefon +49 721 4640-392

E-Mail senden

Dr. Stefan Tröster | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2016/maerz/leichtbauteile-schneller-und-energieeffizienter-fertigen.html

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht Passgenaue Innovationen für anspruchsvolle Montageaufgaben
18.08.2016 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Innovativ und international: Railway Technology auf der InnoTrans 2016
15.08.2016 | Messe Berlin GmbH

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: Neues DFKI-Projekt SELFIE schlägt innovativen Weg in der Verifikation cyber-physischer Systeme ein

Vor der Markteinführung müssen neue Computersysteme auf ihre Korrektheit überprüft werden. Jedoch ist eine vollständige Verifikation aufgrund der Komplexität heutiger Rechner aus Zeitgründen oft nicht möglich. Im nun gestarteten Projekt SELFIE verfolgt der Forschungsbereich Cyber-Physical Systems des Deutschen Forschungszentrums für Künstliche Intelligenz (DFKI) unter Leitung von Prof. Dr. Rolf Drechsler einen grundlegend neuen Ansatz, der es Systemen ermöglicht, sich nach der Produktion und Auslieferung selbst zu verifizieren. Das Bundesministerium für Bildung und Forschung (BMBF) unterstützt das Vorhaben über drei Jahre mit einer Fördersumme von 1,4 Millionen Euro.

In den letzten Jahrzehnten wurden enorme Fortschritte in der Computertechnik erzielt. Ergebnis dieser Entwicklung sind eingebettete und cyber-physische...

Im Focus: „Künstliches Atom“ in Graphen-Schicht

Elektronen offenbaren ihre Quanteneigenschaften, wenn man sie in engen Bereichen gefangen hält. Ein Forschungsteam mit TU Wien-Beteiligung baut Elektronen-Gefängnisse in Graphen.

Wenn man Elektronen in einem engen Gefängnis einsperrt, dann benehmen sie sich ganz anders als im freien Raum. Ähnlich wie die Elektronen in einem Atom können...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Quanten-Jonglieren mit freien Elektronen

Göttinger Wissenschaftler manipulieren Quantenzustand freier Elektronen mit Lichtfeldern

In der klassischen Physik kann ein Elektron nur eine einzige, bestimmte Geschwindigkeit annehmen. Quantenmechanisch ist es jedoch möglich, dass es sich in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

HTW Berlin richtet im September die 30. EnviroInfo aus

23.08.2016 | Veranstaltungen

micro photonics mit Kurs auf Premiere in Berlin

22.08.2016 | Veranstaltungen

„BirdNumbers 2016“ - 300 Ornithologen kommen zu internationaler Tagung an die Uni Halle

22.08.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue vertikale Leiterplatten-Steckverbinder

24.08.2016 | Energie und Elektrotechnik

Funksystem unterstützt Kabelnetzwerk

24.08.2016 | Energie und Elektrotechnik

Verschlüsse von Blutgefäßen: Wissenschaftler klären Mechanismus der zellulären Selbstheilung auf

24.08.2016 | Biowissenschaften Chemie