Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

JEC 2016: Leichtbauteile schneller und energieeffizienter fertigen

01.03.2016

Kunststoff mit Infrarotstrahlung im Werkzeug schmelzen

Beim Konsolidieren von kohlenstofffaserverstärkten Kunststoffen (CFK) verbinden sich Einzelschichten aus Fasern und Kunststoff unter Druck und hoher Temperatur zu einer homogenen Platte. Fraunhofer-Forscher haben ein Verfahren entwickelt, das schnell und energieeffizient ist und sich auch für kleinere Stückzahlen sowie Hochtemperaturkunststoffe eignet: Sie bestrahlen CFK unter Vakuum direkt mit Infrarotstrahlung.


© Foto Fraunhofer ICT

Kohlenstofffasern und erhitzter Kunststoff verbinden sich unter Druck zu einer homogenen CFK-Platte. Mit Infrarotstrahlung unter Vakuum geht das schnell und energieeffizient.

In heutigen Anlagen zur CFK-Fertigung kommen häufig große, kostenintensive Anlagen zum Einsatz. Sie pressen den aufgeschmolzenen Kunststoff zwischen Verstärkungsfasern aus Kohlenstoff oder Glas. Der Kunststoff wird dabei nur indirekt – über die massiven Presswerkzeuge – erhitzt. Die Werkzeuge müssen bewegt, bei variothermer Prozessführung zyklisch aufgeheizt und wieder abgekühlt werden.

Dabei wird prozessabhängig viel Energie und Zeit benötigt. Durch die zum Teil hohen Investitionskosten für Pressen und andere Großanlagen sind kleinere und mittlere Fertigungszahlen häufig nicht rentabel. Doch hierfür gibt es eine Alternative: Forscher des Fraunhofer-Instituts für Chemische Technologie ICT in Pfinztal erhitzen CFK direkt unter Vakuum mit Infrarotstrahlung.

Die Energie wirkt dort, wo sie gebraucht wird. Sofort. Für die Werkzeugwand fanden die Forscher ein Material, das die Infrarotstrahlung im gewünschten Wellenlängenbereich durchlässt und gleichzeitig fast keine eigene Wärmedehnung aufweist. Üblicherweise dauern Vakuum-basierte variotherme Fertigungsprozesse je nach Dicke des Bauteils zwischen 30 Minuten und mehreren Stunden. Mit dem Ansatz des ICT geht das unter 60 Sekunden.

»Unser Verfahren ist schneller, wirtschaftlicher und energieeffizienter als der aktuelle Stand der Technik«, sagt Sebastian Baumgärtner, Maschinenbauingenieur am baden-württembergischen Institut. Die Verarbeitung im Vakuum schont das Material. Der Kunststoff oxidiert nicht wie in offenen Verfahren. Eingeschlossene Luft und mögliche Abgase werden abgesaugt. Der Prozess läuft sehr stabil und ist einfach zu nutzen. »Um CFK zu erhitzen eignen sich bei unserem Ansatz alle elektromagnetischen Strahlen, also auch Mikrowellenstrahlen«, erklärt Baumgärtner. Die Industrie spart Energie, Kosten, Verbrauchsmaterialien und kann schneller fertigen. Das Verfahren ist sowohl für Groß- als auch für Kleinserien geeignet. »Es profitieren insbesondere kleinere und mittelgroße Unternehmen, die sich keine teure Anlagentechnik leisten wollen«, präzisiert Baumgärtner.

Exponat auf der JEC

Auf einer Testanlage fertigen die Forscher mit dem Verfahren 40 x 40 Zentimeter große CFK-Platten. Ähnlich große Teile befinden sich bereits in Sportartikeln oder Automobilteilen. »Unsere Anlage passt in einen normalen Fertigungsbereich«, veranschaulicht Baumgärtner. Im Gegensatz zu großen Pressen fallen Ober- und Unterbau sowie ein spezielles Fundament weg. Die Wissenschaftler stellen das Projekt auf der Fachmesse für Verbundwerkstoffe JEC vom 8. bis 10. März in Paris vor (Pavillion 5A, Stand E70).

Die Anlage fertigt verzugsfreie Platten. »Das ist eine große Herausforderung beim Fertigen von CFK. Wir heizen und kühlen symmetrisch, nutzen eine wärmedehnungsfreie Werkzeugwand und arbeiten mit relativ geringem Prozessdruck, um den ungewollten Quetschfluss zu vermeiden«, sagt Baumgärtner. Durch die glatte Oberfläche der Werkzeugwand entsteht zudem eine nahezu spiegelnde CFK-Platten­­­ober­­fläche. Das ist im finalen Bauteil insbesondere für Anwendungen im Sichtbereich sehr vorteilhaft.

Der Kunststoff erwärmt sich sofort nach Anschalten der Infrarotstrahler. Wieviel Energie genau eingespart wird, können die Wissenschaftler noch nicht sagen. »Noch fehlen uns die exakten Vergleichszahlen. Der Effekt wird aber deutlich sein, da keine großen thermischen Massen aufgeheizt und wieder abgekühlt werden müssen, wie das beim Pressverfahren der Fall ist«, ergänzt der Forscher.

In Autos, Flugzeugen und Sportartikeln

Carbonfasern sind dünner als ein menschliches Haar. Als Kunststoffe für CFK dienen in neuen Entwicklungen häufig Thermoplaste. Sie sind mehrfach aufschmelzbar und können vollständig wiederverwertet werden. Fasern und Kunststoff werden Schicht für Schicht übereinander gestapelt bis die gewünschte Bauteildicke erreicht ist. Hitze und Druck bringen Fasern und geschmolzenen Kunststoff zusammen. Besondere Herausforderung ist es, die Platten ohne Fehlstellen und Lufteinschlüsse zu fertigen, ohne dass die Fasern verschoben werden. Unidirektionales CFK ist in Faserrichtung steif und senkrecht dazu flexibel. So lassen sich über eine spezifische Anordnung der Lagen Bauteile mit individuell einstellbaren Eigenschaften fertigen. CFK ist nicht mehr nur für Raumfahrt oder Formel 1 interessant. Heute wird es in Autos, Flugzeugen und Sportartikeln eingesetzt.

Kontakt
Dr. Stefan Tröster

Fraunhofer-Institut für Chemische Technologie ICT
Joseph-von-Fraunhofer-Straße 7
76327 Pfinztal

Telefon +49 721 4640-392

E-Mail senden

Dr. Stefan Tröster | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2016/maerz/leichtbauteile-schneller-und-energieeffizienter-fertigen.html

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht Neuer DC/DC-Wandler für Photovoltaikanwendungen
20.06.2016 | PHOENIX CONTACT GmbH & Co.KG

nachricht Wetterdaten einfach erfassen
20.06.2016 | PHOENIX CONTACT GmbH & Co.KG

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Organisches Liegerad aus 3-D-Drucker gefertigt

Beim Akkuschrauberrennen, das alle zwei Jahre von der Hochschule für angewandte Wissenschaft und Kunst(HAWK) vor rund 5000 Besuchern in Hildesheim ausgerichtet wird, treten Fahrzeuge, die nur von einem gewöhnlichen Akkuschrauber angetrieben werden und auf denen mindestens eine Person mitfahren kann, gegeneinander an. Die Gestaltung der Flitzer steht jedes Mal unter einem speziellen Motto.

Ihre Vorgänger haben große Fußspuren hinterlassen – nun müssen die „Ostfreezers“ zeigen, was sie können: Das Team aus dem Studiengang Maschinenbau und Design...

Im Focus: Erste experimentelle Quantensimulation eines Phänomens der Teilchenphysik

Mit der ersten Quantensimulation einer Gitter-Eichfeldtheorie schlagen Innsbrucker Physiker eine Brücke zwischen Hochenergiephysik und Atomphysik. Die Forschungsgruppen um Rainer Blatt und Peter Zoller berichten in der Fachzeitschrift Nature, wie sie mit einem Quantencomputer die spontane Entstehung von Elementarteilchen-Paaren aus einem Vakuum simuliert haben.

Die kleinsten bekannten Bausteine der Materie sind die Elementarteilchen, deren Eigenschaften die Teilchenphysik mit dem sogenannten Standardmodell beschreibt....

Im Focus: First experimental quantum simulation of particle physics phenomena

Physicists in Innsbruck have realized the first quantum simulation of lattice gauge theories, building a bridge between high-energy theory and atomic physics. In the journal Nature, Rainer Blatt‘s and Peter Zoller’s research teams describe how they simulated the creation of elementary particle pairs out of the vacuum by using a quantum computer.

Elementary particles are the fundamental buildings blocks of matter, and their properties are described by the Standard Model of particle physics. The...

Im Focus: Wissenschaftler erzeugen Quantenzustände mit ganzzahligem Spin in photonischem Gitter

Fundamentale Teilcheneigenschaften sichtbar gemacht: Physikern um Prof. Dr. Cornelia Denz von der Westfälischen Wilhelms-Universität Münster ist es gelungen, bestimmte quantenphysikalische Effekte zu erzeugen – mit Licht. Sie konnten erstmals Quantenzustände mit ganzzahligem Spin im Licht durch spezielle optische Wirbel sichtbar machen.

Effekte der Quantenphysik sind schwer fassbar. Einem Team von Physikern um Prof. Dr. Cornelia Denz vom Institut für Angewandte Physik der WWU ist es jedoch nun...

Im Focus: Mit Quantensensoren aus Diamant winzige Magnetfelder identifizieren

Forscher am Fraunhofer Institut für Angewandte Festkörperphysik IAF entwickeln hochempfindliche Diamantsonden als Basis für neuartige Quantensensoren. Diese sind in der Lage, kleinste magnetische Felder im Nanometer-Bereich zu identifizieren. In Zukunft sollen die Sonden zur Qualitätskontrolle von magnetischen Speichermedien eingesetzt werden, um fehlerhafte Festplattenbereiche zu identifizieren und so die Ausschussraten und Produktionskosten wesentlich zu reduzieren. Weitere Einsatzfelder liegen in der Charakterisierung biologischer Substanzen wie beispielsweise Proteine.

Die Quantenmechanik ist nicht nur ein spannendes Feld der Grundlagenforschung. Fortschritte in der Quantentechnologie versprechen eine Vielzahl...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Deutsches Biomasseforschungszentrum diskutiert Zukunft der Bioenergie

24.06.2016 | Veranstaltungen

Den kleinsten physikalischen Teilchen auf der Spur

23.06.2016 | Veranstaltungen

Die Zahnmedizin vor neuen Herausforderungen

23.06.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Brandenburg will hoch innovative Materialforschung mit Millionen unterstützen

24.06.2016 | Förderungen Preise

Röntgenuntersuchung zeigt: Arsen sammelt sich bei Pflanzen im Zellkern

24.06.2016 | Biowissenschaften Chemie

MikroRNA verhindert akutes Leberversagen

24.06.2016 | Biowissenschaften Chemie