Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

JEC 2016: Leichtbauteile schneller und energieeffizienter fertigen

01.03.2016

Kunststoff mit Infrarotstrahlung im Werkzeug schmelzen

Beim Konsolidieren von kohlenstofffaserverstärkten Kunststoffen (CFK) verbinden sich Einzelschichten aus Fasern und Kunststoff unter Druck und hoher Temperatur zu einer homogenen Platte. Fraunhofer-Forscher haben ein Verfahren entwickelt, das schnell und energieeffizient ist und sich auch für kleinere Stückzahlen sowie Hochtemperaturkunststoffe eignet: Sie bestrahlen CFK unter Vakuum direkt mit Infrarotstrahlung.


© Foto Fraunhofer ICT

Kohlenstofffasern und erhitzter Kunststoff verbinden sich unter Druck zu einer homogenen CFK-Platte. Mit Infrarotstrahlung unter Vakuum geht das schnell und energieeffizient.

In heutigen Anlagen zur CFK-Fertigung kommen häufig große, kostenintensive Anlagen zum Einsatz. Sie pressen den aufgeschmolzenen Kunststoff zwischen Verstärkungsfasern aus Kohlenstoff oder Glas. Der Kunststoff wird dabei nur indirekt – über die massiven Presswerkzeuge – erhitzt. Die Werkzeuge müssen bewegt, bei variothermer Prozessführung zyklisch aufgeheizt und wieder abgekühlt werden.

Dabei wird prozessabhängig viel Energie und Zeit benötigt. Durch die zum Teil hohen Investitionskosten für Pressen und andere Großanlagen sind kleinere und mittlere Fertigungszahlen häufig nicht rentabel. Doch hierfür gibt es eine Alternative: Forscher des Fraunhofer-Instituts für Chemische Technologie ICT in Pfinztal erhitzen CFK direkt unter Vakuum mit Infrarotstrahlung.

Die Energie wirkt dort, wo sie gebraucht wird. Sofort. Für die Werkzeugwand fanden die Forscher ein Material, das die Infrarotstrahlung im gewünschten Wellenlängenbereich durchlässt und gleichzeitig fast keine eigene Wärmedehnung aufweist. Üblicherweise dauern Vakuum-basierte variotherme Fertigungsprozesse je nach Dicke des Bauteils zwischen 30 Minuten und mehreren Stunden. Mit dem Ansatz des ICT geht das unter 60 Sekunden.

»Unser Verfahren ist schneller, wirtschaftlicher und energieeffizienter als der aktuelle Stand der Technik«, sagt Sebastian Baumgärtner, Maschinenbauingenieur am baden-württembergischen Institut. Die Verarbeitung im Vakuum schont das Material. Der Kunststoff oxidiert nicht wie in offenen Verfahren. Eingeschlossene Luft und mögliche Abgase werden abgesaugt. Der Prozess läuft sehr stabil und ist einfach zu nutzen. »Um CFK zu erhitzen eignen sich bei unserem Ansatz alle elektromagnetischen Strahlen, also auch Mikrowellenstrahlen«, erklärt Baumgärtner. Die Industrie spart Energie, Kosten, Verbrauchsmaterialien und kann schneller fertigen. Das Verfahren ist sowohl für Groß- als auch für Kleinserien geeignet. »Es profitieren insbesondere kleinere und mittelgroße Unternehmen, die sich keine teure Anlagentechnik leisten wollen«, präzisiert Baumgärtner.

Exponat auf der JEC

Auf einer Testanlage fertigen die Forscher mit dem Verfahren 40 x 40 Zentimeter große CFK-Platten. Ähnlich große Teile befinden sich bereits in Sportartikeln oder Automobilteilen. »Unsere Anlage passt in einen normalen Fertigungsbereich«, veranschaulicht Baumgärtner. Im Gegensatz zu großen Pressen fallen Ober- und Unterbau sowie ein spezielles Fundament weg. Die Wissenschaftler stellen das Projekt auf der Fachmesse für Verbundwerkstoffe JEC vom 8. bis 10. März in Paris vor (Pavillion 5A, Stand E70).

Die Anlage fertigt verzugsfreie Platten. »Das ist eine große Herausforderung beim Fertigen von CFK. Wir heizen und kühlen symmetrisch, nutzen eine wärmedehnungsfreie Werkzeugwand und arbeiten mit relativ geringem Prozessdruck, um den ungewollten Quetschfluss zu vermeiden«, sagt Baumgärtner. Durch die glatte Oberfläche der Werkzeugwand entsteht zudem eine nahezu spiegelnde CFK-Platten­­­ober­­fläche. Das ist im finalen Bauteil insbesondere für Anwendungen im Sichtbereich sehr vorteilhaft.

Der Kunststoff erwärmt sich sofort nach Anschalten der Infrarotstrahler. Wieviel Energie genau eingespart wird, können die Wissenschaftler noch nicht sagen. »Noch fehlen uns die exakten Vergleichszahlen. Der Effekt wird aber deutlich sein, da keine großen thermischen Massen aufgeheizt und wieder abgekühlt werden müssen, wie das beim Pressverfahren der Fall ist«, ergänzt der Forscher.

In Autos, Flugzeugen und Sportartikeln

Carbonfasern sind dünner als ein menschliches Haar. Als Kunststoffe für CFK dienen in neuen Entwicklungen häufig Thermoplaste. Sie sind mehrfach aufschmelzbar und können vollständig wiederverwertet werden. Fasern und Kunststoff werden Schicht für Schicht übereinander gestapelt bis die gewünschte Bauteildicke erreicht ist. Hitze und Druck bringen Fasern und geschmolzenen Kunststoff zusammen. Besondere Herausforderung ist es, die Platten ohne Fehlstellen und Lufteinschlüsse zu fertigen, ohne dass die Fasern verschoben werden. Unidirektionales CFK ist in Faserrichtung steif und senkrecht dazu flexibel. So lassen sich über eine spezifische Anordnung der Lagen Bauteile mit individuell einstellbaren Eigenschaften fertigen. CFK ist nicht mehr nur für Raumfahrt oder Formel 1 interessant. Heute wird es in Autos, Flugzeugen und Sportartikeln eingesetzt.

Kontakt
Dr. Stefan Tröster

Fraunhofer-Institut für Chemische Technologie ICT
Joseph-von-Fraunhofer-Straße 7
76327 Pfinztal

Telefon +49 721 4640-392

E-Mail senden

Dr. Stefan Tröster | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2016/maerz/leichtbauteile-schneller-und-energieeffizienter-fertigen.html

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Topologische Isolatoren: Neuer Phasenübergang entdeckt

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen...

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

Intelligente Messmethoden für die Bauwerkssicherheit: Fachtagung „Messen im Bauwesen“ am 14.11.2017

17.10.2017 | Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Sicheres Bezahlen ohne Datenspur

17.10.2017 | Informationstechnologie

Pflanzen gegen Staunässe schützen

17.10.2017 | Biowissenschaften Chemie

Den Trends der Umweltbranche auf der Spur

17.10.2017 | Ökologie Umwelt- Naturschutz