Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Diodenlaser & UV-LEDs – von der Technologie bis zum industrietauglichen Gerät

27.09.2016

Das FBH stellt auf der internationalen Kongressmesse micro photonics in Berlin vom 11. bis 13. Oktober 2016 seine aktuellen Entwicklungen vor.

Auf der internationalen Kongressmesse micro photonics in Berlin präsentiert das Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH) vom 11. bis 13. Oktober 2016 Weiter- und Neuentwicklungen seiner Diodenlaser und UV-Leuchtdioden (LEDs). Auf dem begleitenden Kongress stellt Martin Maiwald am 13. Oktober zudem die Leistungsfähigkeit der mobilen SERDS-Technologie mit einer kompakten FBH-Optode im Feldtest vor.


Stabmodul zur Wasserdesinfektion – Demonstrator mit UV-C-LEDs aus dem FBH (mit Wasseranschlüssen oben und Kühlung links)

Foto: FBH/P. Immerz


Hochbrillantes Diodenlaser-Modul mit Faseranschluss zum Pumpen von Festkörper- und Faserlasern oder zur Frequenzkonversion

Foto: FBH/G. Gurr

Das FBH entwickelt Diodenlaser und LEDs vom Chip bis zum Modul – und zunehmend bis zum einsatzfähigen Gerät, mit dem Kunden und Partner ihre Entwicklungen direkt in der je-weiligen Anwendung testen können. Die maßgeschneiderten Diodenlaser erschließen vielfältige Anwendungen: von der Materialanalytik, Sensorik oder Displaytechnologie bis hin zur Materialbearbeitung.

Die am FBH entwickelten UV-LEDs, mit Fokus auf dem UV-B- und UV-C-Spektralbereich, lassen sich ebenso flexibel auf die Anforderungen zuschneiden. Die Applikationen reichen von der medizinischen Diagnostik und Fluoreszenzspektroskopie bis hin zur Oberflächenbearbeitung und Desinfektion. Auf der Messe zeigt das FBH unter anderem:

Industrietaugliche Diodenlasermodule mit optischem Faseranschluss

Das FBH bietet kompakte Diodenlasermodule, die es Kunden ermöglichen, hochbrillante Laserstrahlung in ihren Anwendungen einfach zu nutzen. Dank integriertem Anschluss an eine Single-Mode-Faser (SMF) lassen sich die nur Streichholzschachtel-großen Module unkompliziert in verschiedene Systeme einbauen. Damit stehen effiziente Laserlichtquellen für den nahinfraroten Spektralbereich zur Verfügung, die beugungsbegrenzte und spektral schmalbandige Strahlung emittieren.

Drei verschiedene Modultypen hat das FBH bislang erfolgreich demonstriert. Bei Modulen mit hohen Ausgangsleistungen >2 Watt mit zugleich hoher spektraler Strahldichte wurden die verfügbaren Wellenlängen auf den Bereich von 804 nm bis 1064 nm erweitert. Dieser Aufbau ist auf Wellenlängen bis 1180 nm übertragbar und eignet sich besonders zum Pumpen von Festkörperlasern und für die Frequenzverdopplung.

Darüber hinaus wurden Module mit einer Leistung >20 mW hinter der Faser, optischem Mikro-Isolator und polarisationserhaltender SMF (PM-SMF) am Ausgang bei 1120 nm und 633 nm demonstriert. Das Auslöschungsverhältnis der beiden Polarisationen beträgt mehr als 20 dB. Module mit PM-SMF-Ausgang bietet das FBH im Spektralbereich zwischen 633 nm und 1180 nm an.

Als dritten Modultyp hat das FBH ein Verstärkermodul bei 1180 nm mit PM-SMF-Eingang und Freistrahlausgang entwickelt, das Leistungen >1 Watt erreicht. Durch Einkoppeln in die PM-SMF kann das Licht eines anderen Lasers auf einfache Weise verstärkt werden. Auch dieses Prinzip ist auf andere Wellenlängen übertragbar.

Alles in einem Gerät – maßgeschneiderte, flexible Pikosekunden-Lichtimpulsquelle

Mit der PLS 1030 bietet das FBH eine sehr effiziente, gepulste Laserstrahlquelle, die auf selbst entwickelten optischen und elektronischen Halbleiterkomponenten basiert. Das Lasersystem wird derzeit so optimiert, dass es neben einer höheren Leistungsfähigkeit die Funktionalitäten in nur noch einem kompakten Gerät integriert – statt bislang zwei Einzelkomponenten. Diese All-in-One-PLS 1030 liefert ultrakurze Lichtimpulse bei einer Wellenlänge von 1030 nm in einem einstellbaren Zeitbereich von 5 bis 15 ps mit frei wählbaren Folgefrequenzen vom Hertz- bis in den Megahertz-Bereich.

Die Pulsspitzenleistung liegt bei über 20 Watt. Dank dieser Eigenschaften eignet sich die Laserquelle ideal für Anwendungen in der Materialbearbeitung, vor allem in Verbindung mit Faserverstärkern, für biomedizinische Untersuchungen auf Basis der Fluoreszenzspektroskopie und für mobile LIDAR-Systeme. Das All-in-One-System kann mit Halbleiterkomponenten für die Wellenlängen 1030 nm und 1064 nm bestückt werden, lässt sich jedoch flexibel auf andere Wellenlängen übertragen.

Es besteht aus einem modengekoppelten Laser mit einer Wiederholrate von etwa 4 GHz, einem innovativen Pulspicker-Element sowie einem optischen Verstärker. Die komplette elektronische Ansteuerung wurde am FBH entwickelt und nutzt selbst entwickelte Galliumnitrid-Transistoren. Durch Einsatz dieser Transistoren können kurze Impulse flexibel vom Einzelpuls bis zu mehreren aufeinander folgenden Pulsen (burst mode) selektiert und verstärkt werden. Die All-in-One-PLS 1030 wird computergesteuert betrieben, sodass sie einfach in verschiedenste Lasersysteme integriert werden kann. Dies sichert einen stabilen und nutzerfreundlichen Betrieb.

Mehr Brillanz und Ausgangsleistung bei Diodenlasern und Barren

Das Institut entwickelt hochbrillante Diodenlaser in vielfältigen Bauformen im Wellenlängenbereich von 630 nm bis 1180 nm. So erreichen Einzelemitter mit einer Streifenbreite von 90 µm mit 3,5 W/mm-mrad Brillanz weltweite Spitzenwerte. Bei noch schmaleren Streifen konnten aus 20…30 µm Aperturen sogar bis >6 W/mm-mrad erzielt werden – auch dies ein Weltbestwert. Für die Materialbearbeitung hat das FBH Arrays entwickelt, die aus fünf brillanten DFB-Lasern mit 30 µm Apertur bestehen.

Sie liefern 5 W Ausgangsleistung pro Emitter mit einer Effizienz von 50%; der Wellenlängenabstand für die spektrale Kombinierung liegt bei 2,5 nm. Weitere Aktivitäten zielen darauf, die Effizienz, Zuverlässigkeit und Ausgangsleistung von Diodenlasern und Barren stetig zu optimieren. Rekordwerte wurden dabei mit neuartigen QCW-Barren erreicht, die bei 15°C betrieben 1 kW Ausgangsleistung mit 60% Effizienz bieten und sogar 70% Effizienz bei gleicher Ausgangsleistung, jedoch betrieben bei niedrigen Temperaturen von -70°C.

Modul zur Wasserdesinfektion mit UV-C-LEDs

Für die Wasserdesinfektion hat das FBH ein Stabmodul mit 262 nm LEDs aus eigener Herstellung entwickelt, das auf den Ersatz bislang genutzter Niederdruck-Quecksilberdampf-lampen zielt. UV-LEDs können mit ihrer längeren Lebensdauer und Wartungsfreiheit punkten. Da sie ohne giftige Chemikalien wie Quecksilber auskommen sind sie zugleich umweltfreundlich – Quecksilberlampen müssen nach wenigen 1.000 Stunden Betrieb sicher entsorgt werden. Bei den LEDs lassen sich zudem die Wellenlänge und Abstrahleigenschaften gezielt verändern und somit auf die gewünschte Anwendung optimieren.

In dem auf der Messe erstmalig gezeigten FBH-Demonstrator wurden 40 LEDs mit optischen Leistungen von jeweils 1,7 mW verbaut – die mittlere Bestrahlungsstärke in einem Abstand von 2 cm liegt bei etwa 2,0 W/m². Die Geometrie wurde an herkömmliche Durchfluss-Wasserentkeimungs-Reaktoren – etwa zur Trink- und Prozesswasser-Aufbereitung – angepasst.

Der Aufbau ist modular erweiterbar und kann daher an verschiedene Reaktorgrößen angepasst werden. Zwei LEDs bilden je eine Baugruppe inklusive Konstantstromversorgung (max. 100 mA pro LED) und Sicherheitstemperaturabschaltung. Die entstehende Wärme wird über eine Heatpipe mit einem angeschlossenen Ventilator abgeführt.

Sie finden das FBH auf der Messe in Halle 7.2C, Stand 207.
Zu allen hier beschriebenen Diodenlasern und LEDs gibt es Pressefotos – die wir Ihnen auf Anfrage umgehend zusenden. Weitere Pressebilder finden Sie hier zum Download: http://www.fbh-berlin.de/presse/bilderservice. Bitte beachten Sie das Copyright.

Kontakt:
Petra Immerz, M.A.
Referentin Kommunikation & Public Relations

Ferdinand-Braun-Institut
Leibniz-Institut für Höchstfrequenztechnik
Gustav-Kirchhoff-Straße 4
12489 Berlin

Tel. 030.6392-2626
Fax 030.6392-2602

E-Mail petra.immerz@fbh-berlin.de

Weitere Informationen:

http://www.fbh-berlin.de
http://www.micro-photonics.de/

Gesine Wiemer | Forschungsverbund Berlin e.V.

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration
25.09.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht OLED auf hauchdünnem Edelstahl
21.09.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops