Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tumorzellen mit Anziehungskraft

15.11.2010
Im Blut zirkulierende Tumorzellen können zukünftig in kleinsten Mengen nachgewiesen und angereichert werden - dank magnetischer Mikrostrukturen.

Die Optimierung dieser Methode für die Verwendung bei verschiedenen Tumorarten ist das Ziel eines Kooperationsprojekts der Fachhochschule St. Pölten mit den PartnerInnen: Donau-Universität Krems, Austrian Institute of Technology und dem LKH Krems.

Für den Erfolg des heute in Atlanta, USA, auf einer internationalen Konferenz vorgestellten Projekts ist vor allem eines wesentlich: die an der FH St. Pölten vorhandene Kombination von Know-how zur digitalen Simulation komplexer Industrieprozesse und dem Verhalten magnetischer Materialien. Das Ziel der Entwicklung ist es, die Identifizierung, die Diagnose und auch das Monitoring von Krebserkrankungen im Klinikbetrieb deutlich zu vereinfachen.

Auf der "55th Annual Conference on Magnetism & Magnetic Materials" in Atlanta, USA, wird heute die Simulation der Selbstorganisation von magnetischen Teilchen für biomedizinische Anwendungen vorgestellt. Die Simulation von selbstorganisierten Strukturen ist Teil eines Kooperationsprojektes der Fachhochschule St. Pölten mit der Donau-Universität Krems (DUK), dem Austrian Institute of Technology (AIT) und dem LKH Krems. Das Ziel des Projekts ist es, einen Labor-Chip zu entwickeln, der verschiedene Arten von zirkulierenden Tumorzellen im Blut von KrebspatientInnen nachweisen kann. Diese kommen extrem selten vor - nur ca. eine Krebszelle kommt im Durchschnitt auf fünf bis zehn Millionen Blutzellen -, können aber wertvolle Auskunft über den Krebs und einen Behandlungsverlauf liefern.

DA BLEIBT WAS "HÄNGEN"
Der innovative Labor-Chip wird wie ein Miniatursieb wirken, das Krebszellen zurückhält und sie somit anreichert. Und es ist die spezielle Struktur dieses Siebes - und deren Anpassung an die Größe und Form verschiedener Tumorzellarten -, die das Team um Prof. Dr. Thomas Schrefl, Leiter des Master-Studiengangs "Industrial Simulation" an der FH St. Pölten, vor große Herausforderungen stellt. Kernstück des Labor-Chips ist eine Mikrostruktur, die mit Antikörpern beschichtet ist und von Dr. Martin Brandl am Zentrum für Biomedizinische Technologie der DUK entwickelt wird. Diese Antikörper binden ganz speziell Krebszellen und fischen diese quasi aus dem vorbeiströmenden Blut heraus.

Für das effiziente Funktionieren dieser Technologie ist es entscheidend, die genaue Form und Größe dieser Mikrostruktur beeinflussen zu können. Dazu Prof. Schrefl: "Zirkulierende Blutzellen verschiedener Tumorarten unterscheiden sich in Form und Größe und erfordern daher jeweils individuelle räumliche Strukturen der Mikrostruktur, um eingefangen zu werden. Soll ein einzelner Chip für mehrere Tumorarten funktionieren, muss diese Struktur variabel sein.

Genau da setzt unser Projekt an, dessen zentrale Idee die Nutzung magnetischer Materialien für die Gestaltung des Siebes ist."

Der Labor-Chip vereint zwar alle wesentlichen Funktionen des Tests auf kleinstem Raum, stellt aber deshalb ganz besondere Anforderungen an seine Konstruktion. Der Porendurchmesser des Mikrosiebes beträgt 0.02 mm bis 0.05 mm. So sind mechanische oder elektrische Manipulationen des Mikrosiebes in dieser Dimension geradezu unmöglich. Eine Anpassung an wechselnde Gegebenheiten schien somit bisher ausgeschlossen. Im Rahmen des von der Life Science Krems GmbH - der Forschungsgesellschaft des Landes Niederösterreich - geförderten Projekts werden Prof. Schrefl und die folgenden Kooperationspartner das nun ändern:

Dr. Hubert Brückl - Leiter des Geschäftsfelds Nano Systems des AIT, Dr. Martin Brandl - Zentrum für Biomedizinische Technologie an der DUK und Univ. Prof. Dr. Martin Pecherstorfer - Leiter des Hämatologisch-Onkologischen Dienst des LKH Krems.

Gemeinsam werden diese Partner nun verschiedene magnetische Materialien auf ihre Eignung für den variablen Labor-Chip untersuchen. Dabei kommt Prof. Schrefls spezielle Kombination an Fachwissen voll zum Tragen: Er gilt als internationaler Experte für den Aufbau magnetischen Materials und deren Beschreibung mit mathematischen Algorithmen. Diese Expertise erlaubt es, die vielen möglichen Variationen der Gestaltung des Miniatursiebes - auch als "Micropost" bezeichnet - am Computer zu optimieren und so langwierige Phasen von Versuch & Irrtum abzukürzen. Ein Micropost, der durch kontrollierte Veränderung die Isolierung und Identifikation mehrerer verschiedener Tumorzellarten erlaubt, scheint damit näher gerückt.

NADEL IM HEUHAUFEN - MAGNET BIETET LÖSUNG Insgesamt werden die Kooperationspartner drei Materialien testen, die es erlauben sollen, den Micropost kontrolliert herzustellen und anschließend zu manipulieren. So genannte Ferrofluide werden dabei genauso getestet werden wie selbst-organisierende magnetische Teilchen und magnetisch aktive Polymere. Denn trotz unterschiedlicher Eigenschaften ist allen drei magnetischen Materialien eines gemeinsam: Ihre räumliche Struktur lässt sich durch ein externes Magnetfeld verändern. So kann ein Micropost, der aus diesem Material gefertigt wurde, auch später noch manipuliert und an verschiedene Tumorarten angepasst werden. Genau das ist die Vorausetzung dafür, dass ein einzelner Labor-Chip unterschiedliche Tumorzellen erkennen kann.

Gemeinsam mit dem Know-how der Partner erlaubt Prof. Schrefls Expertise im Bereich magnetischer Materialien und seine Kenntnisse über die Simulation entsprechender Vorgänge, die optimale Lösung für genau diese Art des Tumor-Diagnosechips an der FH St. Pölten zu entwickeln.

Über die Fachhochschule St. Pölten
Die Fachhochschule St. Pölten ist Anbieterin praxisbezogener und leistungsorientierter Hochschulausbildung in den Bereichen Technologie, Wirtschaft und Gesundheit & Soziales. In mittlerweile 14 Studiengängen werden mehr als 1800 Studierende betreut. Neben der Lehre widmet sich die FH St. Pölten intensiv der Forschung. Die wissenschaftliche Arbeit erfolgt innerhalb der Studiengänge sowie in eigens etablierten Instituten, in denen laufend praxisnahe und anwendungsorientierte Forschungsprojekte entwickelt und umgesetzt werden.
Wissenschaftlicher Kontakt:
Prof. Dr. Thomas Schrefl
Fachhochschule St. Pölten
Leiter des Master-Studiengangs Industrial Simulation Matthias Corvinus-Str. 15 3100 St. Pölten T +43 / (0)2742 / 313 228 - 313 E thomas.schrefl@fhstp.ac.at W http://www.fhstp.ac.at
Redaktion & Aussendung:
PR&D - Public Relations für Forschung & Bildung Mariannengasse 8 1090 Wien T +43 / (0)1 / 505 70 44 E contact@prd.at W http://www.prd.at

Raphaela Spadt | PR&D
Weitere Informationen:
http://www.fhstp.ac.at

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Auf die richtige Verbindung kommt es an: Tiefe Hirnstimulation bei Parkinsonpatienten individuell anpassen
22.06.2017 | Charité – Universitätsmedizin Berlin

nachricht Forschungsprojekt BabyLux: Neues Messinstrument schützt Frühgeborene vor Gehirnschädigungen
12.06.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften