Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tele-Arbeit mit Gefühl

23.11.2010
Zwölf Jahre Forschung an Telepräsenz und Teleaktion in München
Wenn Feinmechaniker winzige Herzschrittmacher zusammenbauen oder Ärzte minimal-invasiv an Blutgefäßen operieren, werden sie in Zukunft Werkzeug oder OP-Besteck nicht mehr selber in die Hand nehmen müssen: Sie schlüpfen zum Beispiel in eine Art Handschuh, der ihre Bewegungen auf einen ferngesteuerten Roboter überträgt.

Gleichzeitig vermittelt der Handschuh, wie sich Werkteile oder Gewebe anfühlen. Das funktioniert auch über große Entfernungen, sodass zum Beispiel Serviceroboter von der Technikzentrale oder sogar Satelliten von der Erde aus repariert werden können.

München im Jahr 2020: Ein Haushaltsroboter geht kaputt. Das ist sehr unangenehm für seinen Besitzer, einen älteren Herrn, dem der Roboter in kleinen Dingen des Alltags hilft – etwa beim Binden der Schnürsenkel oder beim Aufheben eines heruntergefallenen Bleistifts. Wenn es nach den Wissenschaftlern des Münchener Sonderforschungsbereichs 453 (SFB) geht, wird der ältere Herr nicht lange auf einen anreisenden Techniker warten müssen: Der Haushaltsroboter des Nachbarn führt die Reparatur aus, ferngesteuert von einem Techniker in der Zentrale.

Zwölf Jahre lang haben die Münchener Wissenschaftler Techniken der „wirklichkeitsnahen Teleaktion und Telepräsenz“ so verfeinert, dass Roboter per Fernsteuerung in Zukunft auch knifflige Aufgaben lösen können, für die eine Menge Fingerspitzengefühl benötigt wird. Der Operator, also zum Beispiel der Techniker in der Zentrale, kann fühlen, wie schwer und fest das Ersatzteil ist und wie es beim Einsetzen in den defekten Roboter an den Rändern eines Schachtes entlang schabt. Dazu dient ihm ein haptisches Eingabegerät wie zum Beispiel ein Handschuh, das ihm Kräfte aus der entfernten Umgebung übermittelt. Um die Menge der übertragenen Daten zu reduzieren, entwickelten die Forscher eigens Datenkompressionsalgorithmen für haptische Signale, ähnlich dem MP3 für Audiodaten.

Außerdem kann der Operator hören, aus welcher Richtung Geräusche kommen, auch wenn er den Kopf dreht, bleiben Geräuschquellen an ihrem Ort – dieses binaurale Richtungshören stellt eine deutliche Verbesserung gegenüber dem bisher üblichen Stereoklang dar. Und er bekommt hoch aufgelöste, dreidimensionale Bilder auf einen Monitor vor seinen Augen und sieht damit dasselbe, was der Roboter sieht. Ressourcenoptimale Videokodierungsalgorithmen sorgen auch hierbei für eine optimale Ausnutzung der zur Verfügung stehenden Bandbreite des Kommunikationskanals.

Was aber, wenn die Reparatur so schwierig ist, dass ein zweites Paar Hände benötigt werden? Im Zukunftsszenario wird einfach der Serviceroboter des zweiten Nachbarn dazu gerufen, den ein zweiter Operator bedient. Für Münchener Wissenschaftler stellte diese Situation eine besondere Herausforderung dar. Denn wenn zwei Menschen zusammenarbeiten, zum Beispiel gemeinsam einen Gegenstand tragen, stimmen sie fortwährend ihre Kräfte aufeinander ab – damit der Gegenstand nicht zu Boden fällt. Das Problem: Bei Teleoperationen vergeht Zeit für die Übertragung von Sensorsignalen und Bewegungsbefehlen zwischen beiden Robotern und der Fernsteuerungszentrale – zu viel, als dass eine gute Koordination noch möglich wäre. Die Operatoren arbeiten dann „move-and-wait“: Nach jeder ihrer Bewegungen warten sie, bis sie sehen, dass der Roboter nachgezogen hat.

Um das Problem zu lösen, haben die Münchener Wissenschaftler eine Software entwickelt, die auftretende Interaktionskräfte in der entfernten Umgebung vorausberechnet und damit die Synchronisation zwischen Aktion und Reaktion wieder herstellt. Dadurch kann der Operator den Roboterarm zügig und sicher bewegen.

Die neuen Teleoperationstechniken haben großes Potenzial: Roboter werden auch im Weltall aktiv sein und ferngesteuert defekte Satelliten reparieren oder verschrotten helfen. Hierfür wurde am Deutschen Zentrum für Luft- und Raumfahrt (DLR) ein menschenähnlicher Roboter namens SpaceJustin entwickelt, dessen Gelenke seit 2005 auf der Internationalen Raumstation ISS auf ihre Praxistauglichkeit getestet werden. In SFB-Projekten wurden dabei neue Methoden für die Datenübertragung und -kompression, für die Regelung mit großen Verzögerungszeiten und zur intuitiven Bedienung entwickelt.

Bei minimal-invasiven Operationen dagegen, die für den Patienten sehr schonend sind, wird die Teleoperation die Arbeitsbedingungen des Arztes verbessern: In Zukunft wird er nicht mehr über den Patienten gebeugt stehen und gleichzeitig den Monitor beobachten, sondern er wird die OP an einem Tisch sitzend mit Fernsteuerung ausführen, während ihm auf dem Bildschirm parallel zu den Aufnahmen aus dem Körperinnern weitere Patientendaten wie CT-Bilder eingespielt werden. Ergebnisse aus verschiedenen SFB-Projekten, wie kleinste Instrumente mit Kraftmessung oder die Bewegungskompensation für Operationen am schlagenden Herzen, flossen hierbei in die Verbesserung des vom DLR entwickelten mehrarmigen Chirurgierobotersystems MiroSurge ein. Die operierenden Roboterarme können dem Arzt einzelne Arbeitsschritte wie das Verknoten eines Fadens abnehmen - eines der SFB-Projekte war hierin erfolgreich.

Wenn es in der Industrie um die Montage sehr kleiner Teile wie etwa Kraftsensoren geht, die in geringen Stückzahlen hergestellt werden, wird die Teleoperation nützlich sein: Kräfte und Bewegungen des Arbeiters können auf die Mikroebene herunterskaliert werden, so dass sich die mikroskopisch kleinen Bauteile leichter zusammensetzen lassen. Wenn der Operator einen Hebel um 10 Zentimeter verschiebt, bewegt sich der Roboterarm mit dem winzigen Bauteil nur wenige Mikrometer.

Vielleicht müsste auch auf erfahrene Fachkräfte zum Beispiel bei der Montage hochwertiger Uhren nicht mehr verzichtet werden, wenn deren Hände mit fortschreitendem Alter nicht mehr ruhig genug sind: Eine Teleoperation per Roboter wäre in der Lage, ein Zittern der Hände auszugleichen.

Video zu den Projekten des SFB 453:
http://www.lsr.ei.tum.de/team/peer/sfb453_highQuality.mpg

Website des SFB 453:
http://www.lrz.de/~t8241ad/webserver/webdata/

Sonderforschungsbereiche sind langfristige, in der Regel auf die Dauer von bis zu zwölf Jahren angelegte Forschungseinrichtungen der Hochschulen, in denen wissenschaftliche Zusammenarbeit im Rahmen fächerübergreifender Forschungsprogramme gefördert wird. Jeder Sonderforschungsbereich besteht dabei aus einer unterschiedlichen Anzahl von Teilprojekten, die von einzelnen gegebenenfalls aber auch von mehreren Wissenschaftlerinnen und Wissenschaftlern gemeinsam geleitet werden. Sonderforschungsbereiche werden von der Deutschen Forschungsgemeinschaft aus Mitteln des Bundes und der Länder gefördert.

Partner des Sonderforschungsbereichs 453 „Wirklichkeitsnahe Telepräsenz und Teleaktion“ waren
die Technische Universität München, die den Sprecher stellte (Prof. Martin Buss),
das Deutsche Zentrum für Luft- und Raumfahrt (DLR),
die Universität der Bundeswehr München und
die Ludwigs-Maximilians-Universität München.

| Technische Universität München
Weitere Informationen:
http://www.tum.de

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Mikroskop im Kugelschreiberformat: Auf dem Weg zur endoskopischen Krebsdiagnose
28.04.2017 | Leibniz-Institut für Photonische Technologien e. V.

nachricht Highspeed-Laser erkennt Krebs in zwei Minuten
25.04.2017 | University of Hong Kong

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie