Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Phasenkontrast-Radiographie liefert detaillierte Bildgebung der Lunge bei Erkrankungen

27.05.2014

Wissenschaftler des Helmholtz Zentrums München (HMGU) in Zusammenarbeit mit dem Klinikum der Universität München (KUM) und der Technischen Universität München (TUM) haben erstmals die Phasenkontrast-Radiographie am lebenden Organismus für die Diagnostik von Lungenkrankheiten getestet.

Damit lassen sich detaillierte Aufnahmen der Lunge produzieren und so unterschiedliche Krankheitsbilder darstellen. Wie das Team in der Fachzeitschrift ‚Investigative Radiology‘ berichtet, verspricht die Methode, Krankheiten wie Lungenemphysem bereits frühzeitig erkennen zu können.

Herkömmliche Röntgenverfahren erzeugen Bilder abhängig von der Strahlenabsorption des dargestellten Gewebes. Die Phasenkontrast-Bildgebung hingegen benutzt den Wellencharakter des Röntgenlichts und registriert so kleinste Veränderungen der Phase, die durch Wechselwirkungen mit dem Gewebe entstehen können.

Detaillierte Bilder

Mittels dieser neuen Technik konnte ein interdisziplinäres Team von HMGU, KUM und TUM um Dr. Ali Önder Yildirim und Prof. Dr. Oliver Eickelberg vom Comprehensive Pneumology Center (CPC), ein Standort des Deutschen Zentrums für Lungenforschung (DZL), detaillierte Aufnahmen von Weichteilgewebe erreichen.

Die Arbeit entstand in Kooperation mit dem Exzellenzcluster Munich-Centre for Advanced Photonics (MAP). Der eingesetzte Röntgen-Kleintierscanner wurde an der TUM von Prof. Franz Pfeiffer entwickelt, um die Technologie der Phasenkontrast-Radiographie am lebenden Organismus zu testen. In ihren Untersuchungen werteten die Wissenschaftler Aufnahmen der Lunge aus und verglichen die Bilder. „Strukturelle Veränderungen des Lungengewebes werden mit der Phasenkontrast-Radiographie bereits in einem frühen Stadium sichtbar“, erklärt Dr. Ali Önder Yildirim vom CPC/HMGU.

Früherkennung von Lungenerkrankungen

„Eine frühzeitige Erkennung von verändertem Lungengewebe erlaubt uns eine verbesserte Diagnostik von Lungenerkrankungen“, so Erstautor Dr. Felix Meinel vom Institut für klinische Radiologie am KUM. Weitere Studien sollen nun prüfen, wie die Methode im klinischen Bereich, z.B. für die Diagnose von Lungenemphysem oder Lungenfibrose, eingesetzt werden kann.

Lungenerkrankungen gehören weltweit zu den führenden Todesursachen. Bei ihrer Entstehung spielen Genetik, Lebensstil und Umweltfaktoren eine Rolle. Als Deutsches Forschungszentrum für Gesundheit und Umwelt liegt der Schwerpunkt des Helmholtz Zentrums München auf den großen Volkskrankheiten. Ziel ist es, neue Ansätze für Diagnostik, Therapie und Prävention zu entwickeln.

Weitere Informationen

Original-Publikation:
Meinel, F. et al. (2014): Improved Diagnosis of Pulmonary Emphysema using in vivo Dark-Field Radiography, Investigative Radiology. doi: 10.1097/RLI.0000000000000067
Link zur Fachpublikation: http://journals.lww.com/investigativeradiology/Abstract/publishahead/Improved_Di...

Weitere Referenzen:
Bech, M. et al. (2013): In-vivo dark-field and phase-contrast x-ray imaging, Nature Scientific Reports, doi: 10.1038/srep03209

Das Helmholtz Zentrum München verfolgt als Deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Genetik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.200 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 18 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 34.000 Beschäftigten angehören. Das Helmholtz Zentrum München ist Partner im Deutschen Zentrum für Lungenforschung. http://www.helmholtz-muenchen.de

Das Comprehensive Pneumoloy Center (CPC) ist ein Zusammenschluss des Helmholtz Zentrums München mit dem Universitätsklinikum der Ludwig-Maximilians-Universität München und den Asklepios Fachkliniken München-Gauting. Ziel des CPC ist die Erforschung chronischer Lungenerkrankungen, um neue diagnostische und therapeutische Strategien zu entwickeln. Das CPC führt mit der Untersuchung zellulärer, molekularer und immunologischer Mechanismen von Lungenerkrankungen den Schwerpunkt der experimentellen Pneumologie an. Das CPC ist ein Standort des Deutschen Zentrums für Lungenforschung (DZL). http://www.cpc-munich.org/

Das Deutsche Zentrum für Lungenforschung (DZL) ist ein nationaler Verbund, der Experten auf dem Gebiet der Lungenforschung bündelt und Grundlagenforschung, Epidemiologie und klinische Anwendung verzahnt. Standorte sind Borstel/Lübeck/Kiel/Großhansdorf, Gießen/Marburg/Bad Nauheim, Hannover, Heidelberg und München. Ziel des DZL ist es, über einen neuartigen, integrativen Forschungsansatz Antworten auf offene Fragen in der Erforschung von Lungenkrankheiten zu finden und damit einen wesentlichen Beitrag zur Verbesserung von Prävention, Diagnose und Therapie zu leisten. http://www.dzl.de/index.php/en/

Am Munich Center for Advanced Photonics (MAP) entwickeln Physiker, Chemiker, Biologen und Mediziner zukunftsweisende Licht- und lasergetriebene Teilchenquellen. Das DFG (Deutsche Forschungsgemeinschaft)-Exzellenzcluster gilt als eine der weltweit führenden Einrichtungen in den Laserwissenschaften. In Kombination mit innovativen bildgebenden Verfahren bergen die Lichtquellen das Potential, die Diagnose verschiedener Krankheiten signifikant zu verbessern, neue Therapieansätze zu realisieren und damit Heilungschancen zu erhöhen. http://www.munich-photonics.de/

Ansprechpartner für die Medien
Abteilung Kommunikation, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Tel.: 089-3187-2238 - Fax: 089-3187-3324 - E-Mail: presse@helmholtz-muenchen.de

Fachliche Ansprechpartner am Helmholtz Zentrum München

Dr. Ali Önder Yildirim, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Comprehensive Pneumoloy Center, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel.: 089-3187-4037 - E-Mail: oender.yildirim@helmholtz-muenchen.de

Prof. Dr. Oliver Eickelberg, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Comprehensive Pneumoloy Center, Max-Lebsche-Platz 31, 81377 München - Tel.: 089-3187-4666 - E-Mail: oliver.eickelberg@helmholtz-muenchen.de

Fachlicher Ansprechpartner an der Technischen Universität München
Prof. Dr. Franz Pfeiffer, Lehrstuhl für Biomedizinische Physik, Department Physik, Technische Universität München, James-Franck-Str. 1, 85748 Garching - Tel.: 089-289-12551

Fachlicher Ansprechpartner am Klinikum der Ludwig-Maximilians-Universität München
Dr. Felix G. Meinel, Institut für Klinische Radiologie, Klinikum der Ludwig-Maximilian-Universität-München, Marchioninistr. 15, 81377 Munich, Germany, Tel +49-89-7095-3620

Weitere Informationen:

http://www.helmholtz-muenchen.de/aktuelles/uebersicht/pressemitteilungnews/artic...

Susanne Eichacker | Helmholtz-Zentrum

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Herzforschung - Neue Katheterklappe in Tübingen entwickelt
16.01.2017 | Universitätsklinikum Tübingen

nachricht Fernüberwachung bei Herzschwäche kann Klinikaufenthalt ersparen
09.01.2017 | Universitäts-Herzzentrum Freiburg - Bad Krozingen

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie