Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Optimierte Therapie für komplexe Knochentumoren des Beckens: GPS für Orthopäden und Pathologen

20.12.2017

Maligne Knochentumoren des Beckens sind häufig zum Zeitpunkt der Diagnosestellung bereits sehr groß. Entsprechend schwierig ist es, zum Einen die meist ausgedehnten Knochendefekte durch stabile, passgenaue Spezialimplantate zu überbrücken. Zum Anderen genau erfassen zu können, ob und wo potenziell noch Krebszellen verblieben sind. Dies sind wesentliche Faktoren für die weiteren Behandlungsentscheidungen und das Überleben des Patienten.

Das Forscherteam um Prof. Burgkart und Prof. v. Eisenhart-Rothe vom Klinikum r. d. Isar der Technischen Universität München hat nun mit Hilfe neuer Computer assistierter Verfahren sowohl die orthopädische Operation selbst als auch die postoperative Analyse durch den Pathologen wesentlich optimiert.


Abb. 1: Dreidimensionale Röntgenbildgebung

Prof. Burgkart


Abb. 2: Vergleichende Visualisierung anatomisch präziser Gewebeschnitte

Prof. Burgkart

Aufgrund der anfänglich geringen Beschwerden sind bösartige Knochentumoren des Beckens zum Zeitpunkt der ersten Diagnosestellung häufig kindskopfgroß. Entsprechend stellt die möglichst komplette Tumorentfernung und die biomechanisch stabile Rekonstruktion der meist ausgedehnten Knochendefekte mit Hilfe von Maß-angefertigten Spezialimplantaten bis heute eine der größten Herausforderungen an einen orthopädischen Chirurgen dar.

Nur in enger Kooperation mit spezialisierten Radiologen wie Prof. Dr. K. Wörtler (Institut für Radiologie, TUM) können auf Basis hochaufgelöster moderner Bildgebungsverfahren wie Computer (CT)- und Magnetresonanztomographie (MRT) die Tumorgrenzen genau erfasst werden und die Operation präzise geplant werden.

Um eine verstümmelnde Amputation - wie sie früher üblich war - zu verhindern, wird heutzutage der zu entfernende Beckenknochen durch eine für den Patienten maß-angefertigte Tumorspezialprothese ersetzt. Seit einigen Jahren kommen dabei bei spezialisierten Medizintechnikfirmen moderne 3-D Druckverfahren zum Einsatz, die diese Spezialimplantate präzise aus medizinisch zugelassenem Titan additiv fertigen.

Wo bestehen aber nach wie vor ungelöste Probleme trotz all dieser hochmodernen Technologien? Drei wesentliche Herausforderungen sind für komplexe Knochentumoren des Beckens bisher nicht ausreichend gelöst:

1) Um diese Spezialimplantate exakt im Patienten positionieren zu können, werden bisher spezielle Sägeschablonen verwendet, deren erheblicher Nachteil darin besteht, dass großflächig gesunde Muskulatur vom Beckenkamm abgelöst werden muss.

2) Andererseits lassen sich aber moderne PC-basierte Navigationssysteme bisher am Becken nicht einsetzen, da eine zeiteffiziente Erfassung der Patientenposition gegenüber den präoperativen Bilddaten i.S. einer Referenzierung nicht realisiert ist.

3) Schließlich ist - trotz gründlicher Analyse des entfernten Tumors durch den Pathologen - eine genaue anatomische Ortsangabe, wo potenziell bösartige Tumorzellen im Körper des Patienten verblieben sind, derzeit in der Regel nicht möglich. Diese fehlende Zuordnung erschwert jedoch erheblich die weiteren Behandlungsschritte wie z.B. eine gezielte Nachbestrahlung oder die Vermeidung von unnötig weiträumigen Sicherheitszonen.

Um diese Problembereiche systematisch anzugehen und Lösungsansätze anwendungsnah zu entwickeln, haben das interdisziplinäre Forscherteam aus Medizinern, Ingenieuren sowie Informatikern um Prof. Burgkart und Prof. v. Eisenhart-Rothe vom Klinikum r.d. Isar der Technischen Universität München in enger Kooperation mit dem Implantathersteller AQ-Implants/Ahrensburg, der Röntgengerätefirma Ziehm/Nürnberg und der Navigationsfirma BrainLab/Feldkirchen einen optimierten Workflow für diese klinische Anwendung durch die Integration bestehender Systeme bzw. deren gezielter Ergänzung sowie Neuentwicklung realisiert.

Dabei konnten die früher verwendeten Sägeschablonen mit Hilfe einer Navigationsfunktion unter Verwendung einer speziellen Sägeblattführung ersetzt werden. Eine zeiteffiziente Erfassung der Patientenposition gegenüber den Bilddaten, die vor der Operation erstellt wurden und an denen die detaillierte präoperative Planung vorgenommen wurde, konnte mittels einer dreidimensionalen Röntgenbildgebung während der Operation und dem „Zusammenführen“ der verschiedenen Bilddaten für die Beckenregion in dieser Form erstmalig realisiert werden (Abb. 1). Dies stellte eine essentielle Grundvoraussetzung für den praktikablen Einsatz des Navigationssystems für diesen Anwendungsbereich dar.

Um schließlich den dritten Problembereich zu adressieren, wurde ein neuartiges patientenspezifisches Halterungssystem entwickelt mit dessen Hilfe der entnommene Tumorbereich exakt den jeweiligen präoperativen Bilddaten zugeordnet werden kann und damit gleichzeitig anatomisch präzise Gewebeschnitte für die weitere histologische Analyse durch den Pathologen durchgeführt werden können (Abb. 2). So ergibt sich erstmalig die Möglichkeit, dass die Gewebebeurteilung im Mikroskop sozusagen „rückprojiziert“ werden kann auf die präoperativen CT bzw. MRT Bilder und somit „in den Patienten rückübertragen“ werden können.

Dadurch ist nun die Grundlage geschaffen, um – sofern nötig - Nachresektionen oder auch Nachbestrahlungen hochgenau im jeweils anatomisch kritischen und relevanten Bereich exakt durchzuführen und damit potenziell das Risiko einer erneuten Tumorentwicklung zu minimieren bzw. unnötig weiträumige Nach-Resektionen/-Bestrahlungsfelder zu vermeiden.

Ergänzungen zu den Abbildungen:

Abb.1: Intraoperative Umsetzung der präoperativen Planung mit (a) dreidimensionalem Röntgen der entsprechenden tumortragenden Beckenhälfte und nachfolgender Übertragung der Daten ins Navigationssystem, (c) nach Grobreferenzierung erfolgreiche Feinregistrierung mit Fusion des präoperativen CT, (b) Plausibilitäts- und Genauigkeitskontrolle, (d) genaue intraoperative Einblendung der präoperativen Planung im präoperativen CT, (e) verschiedene, synchrone Ansichten im Navigationsdisplay während dem Einbringen der Führungsdrähte

Abb. 2: Vergleichende Visualisierung des axialen Schnittes mit der kritischen Tumorausdehnung ins kleine Becken im (a) präoperativen CT, (b) im hochaufgelösten „postoperativen CT des Tumorpräparates (daher ohne Oberschenkelkopf), (c) der unfixierte axiale Knochenschnitt mittels Gewebesäge und schließlich (d) dieser Knochenschnitt nach Fixation in Formalin mit Fotodokumentation in der Pathologie (Ltd. OÄ PD Dr. med. K. Specht, Institut für Allg. Pathologie und Pathologische Anatomie der TUM) und anschließender flächendeckender histologischer Aufarbeitung des Präparates nach Entkalkung mit genauer räumlicher Zuordnung.

Kontakt (Projektleitung):
Prof. Dr. med. Rainer Burgkart
Oberarzt und Leiter der orthopädischen Forschung
Klinik für Orthopädie und Sportorthopädie, Klinikum rechts der Isar, Ismaninger Straße 22
Tel: 089-4140 5283
Mail: burgkart@tum.de

Die Wilhelm Sander-Stiftung hat dieses Forschungsprojekt mit rund 166.000 Euro unterstützt. Stiftungszweck ist die Förderung der medizinischen Forschung, insbesondere von Projekten im Rahmen der Krebsbekämpfung. Seit Gründung der Stiftung wurden insgesamt über 220 Millionen Euro für die Forschungsförderung in Deutschland und der Schweiz bewilligt. Die Stiftung geht aus dem Nachlass des gleichnamigen Unternehmers hervor, der 1973 verstorben ist.

Weitere Informationen zur Stiftung: http://www.wilhelm-sander-stiftung.de

Bernhard Knappe | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Amputation Becken Beckenknochen Bilddaten CT GPS Halterungssystem Krebsbekämpfung MRT Pathologie TUM

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Immer mehr Patienten profitieren von Innovationen in der Gefäßmedizin
08.06.2018 | Deutsche Gesellschaft für Angiologie - Gesellschaft für Gefäßmedizin e.V.

nachricht Doppelschichtstents in der Halsschlagader schützen vor Schlaganfall
07.06.2018 | Deutsche Gesellschaft für Angiologie - Gesellschaft für Gefäßmedizin e.V.

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 in Shanghai

Die AchemAsia geht in ihr viertes Jahrzehnt und bricht auf zu neuen Ufern: Das International Expo and Innovation Forum for Sustainable Chemical Production findet vom 21. bis 23. Mai 2019 in Shanghai, China statt. Gleichzeitig erhält die Veranstaltung ein aktuelles Profil: Die elfte Ausgabe fokussiert auf Themen, die für Chinas Prozessindustrie besonders relevant sind, und legt den Schwerpunkt auf Nachhaltigkeit und Innovation.

1989 wurde die AchemAsia als Spin-Off der ACHEMA ins Leben gerufen, um die Bedürfnisse der sich damals noch entwickelnden Iindustrie in China zu erfüllen. Seit...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: Li-Fi erstmals für das industrielle Internet der Dinge getestet

Mit einer Abschlusspräsentation im BMW Werk München wurde das BMBF-geförderte Projekt OWICELLS erfolgreich abgeschlossen. Dabei wurde eine Li-Fi Kommunikation zu einem mobilen Roboter in einer 5x5m² Fertigungszelle demonstriert, der produktionsübliche Vorgänge durchführt (Teile schweißen, umlegen und prüfen). Die robuste, optische Drahtlosübertragung beruht auf räumlicher Diversität, d.h. Daten werden von mehreren LEDs und mehreren Photodioden gleichzeitig gesendet und empfangen. Das System kann Daten mit mehr als 100 Mbit/s und fünf Millisekunden Latenz übertragen.

Moderne Produktionstechniken in der Automobilindustrie müssen flexibler werden, um sich an individuelle Kundenwünsche anpassen zu können. Forscher untersuchen...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: ALMA entdeckt Trio von Baby-Planeten rund um neugeborenen Stern

Neuartige Technik, um die jüngsten Planeten in unserer Galaxis zu finden

Zwei unabhängige Astronomenteams haben mit ALMA überzeugende Belege dafür gefunden, dass sich drei junge Planeten im Orbit um den Säuglingsstern HD 163296...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

Simulierter Eingriff am virtuellen Herzen

18.06.2018 | Veranstaltungen

Künstliche Intelligenz – Schafft der Mensch seine Arbeit ab?

15.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Überdosis Calcium

19.06.2018 | Medizin Gesundheit

Lasertests unter Tiefsee-Bedingungen am LZH

19.06.2018 | Materialwissenschaften

Neuer Abwehrmechanismus gegen Sauerstoffradikale entdeckt

18.06.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics