Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dem Gehirn beim Arbeiten zusehen: RUB und Bergmannsheil präsentieren neuen Kernspintomographen

14.12.2010
Pressemitteilung der Ruhr-Universität Bochum und des Berufsgenossenschaftlichen Universitätsklinikums Bergmannsheil

Starkes 3-Tesla-Magnetfeld erlaubt detailreiche Bilder

Selbst kleinste Nervenstrukturen und Gehirnzellen bei der Arbeit in hoher Qualität bildlich darstellen: Das kann der neue Kernspintomograph, den die Ruhr-Universität Bochum (RUB) und das Berufsgenossenschaftliche Universitätsklinikum Bergmannsheil angeschafft und jetzt in Betrieb genommen haben.

Das Gerät, das am Bergmannsheil installiert wurde, erzeugt aufgrund einer Magnetfeldstärke von drei Tesla und einer hochauflösenden 32-Kanal-Kopfspule sehr detail- und kontrastreiche Bilder bei deutlich verkürzter Untersuchungszeit. Genutzt wird es für neurowissenschaftliche Forschungsprojekte der RUB sowie für klinische Untersuchungen im Bergmannsheil.

Der Kernspintomograph wurde von der RUB finanziert, die Kosten für die technische Infrastruktur und den Einbau trägt das Bergmannsheil, das zum Universitätsklinikum der RUB (UK RUB) gehört. Insgesamt wurden hierfür rund 2,1 Mio. Euro investiert.

„Goldstandard“ der Kernspintomographie

„Der neue Kernspintomograph bringt einen starken Impuls für die neurowissenschaftliche Forschung an der Ruhr-Universität“, erklärt Prof. Dr. Denise Manahan-Vaughan, Direktorin des Instituts für Neurophysiologie der RUB. Prof. Dr. Martin Tegenthoff, Direktor der Neurologischen Klinik des Bergmannsheil ergänzt: „Das Gerät entspricht aufgrund seiner hohen Feldstärke derzeit dem Goldstandard in der Kernpintomographie: Das verbessert auch die Diagnostik in der Patientenversorgung.“ Der 3-Tesla-Kernspintomograph ist speziell für Untersuchungen des Kopfes und des Rückenmarks ausgelegt. Er erzeugt sehr differenzierte Schnittbilder aus dem Inneren des Kopfes. Detailreiche Ansichten des Gehirns, seiner Strukturen und Gefäßsysteme können ebenso gewonnen werden wie Aufschlüsse über die Gehirnaktivität bei unterschiedlichen Aufgaben und Tätigkeiten, über Stoffwechselprozesse und die Hirndurchblutung.

Mehr Durchblick für die Forschung

In der Forschung wird das Gerät vor allem dafür genutzt, das Verständnis für die Arbeitsweise und die Verknüpfungen innerhalb des Gehirns zu verbessern. Dazu werden Probanden im Kernspintomographen untersucht, während sie an bestimmten Aufgaben arbeiten. Da das Gerät nicht mit Röntgenstrahlung, sondern mit Magnetfeldern und Radiowellen arbeitet, ist das Verfahren für die Probanden gesundheitlich unbedenklich. Während der Untersuchung lassen sich am Bildschirm jene Areale des Gehirns identifizieren, die für die jeweilige Aufgabe benötigt werden und daher eine höhere Aktivität zeigen. Solche Tests nutzen Wissenschaftler beispielsweise, um die Lernprozesse des Gehirns besser zu verstehen. Aber auch für Fragestellungen in der Schizophrenie-Forschung oder zu Krankheitsbildern wie der Multiplen Sklerose erhoffen sich die Neurowissenschaftler neue Antworten. Genutzt wird der Kernspintomograph von allen Forschern und Forschergruppen, die zum Research Department Neuroscience der RUB (Sprecherin: Prof. Dr. Denise Manahan-Vaughan) gehören.

Bessere Diagnostik in der Patientenversorgung

Daneben nutzt die Neuanschaffung auch der Patientenversorgung im Bergmannsheil. So lässt sich beispielsweise die Hirndurchblutung sehr exakt bestimmen und selbst kleinste Hirninfarkte können bildlich dargestellt werden. „Der neue Hochfeld-Magnetresonanztomograph erlaubt die genaue Untersuchung von Verbindungen zwischen verschiedenen Hirnregionen“, erläutert Prof. Dr. Volkmar Nicolas, Direktor der Radiologischen Klinik am Bergmannsheil. Damit können die Ärzte Schäden zum Beispiel nach schweren Hirnverletzungen und die Konsequenzen für den Verletzten im täglichen Leben besser einschätzen. Auch therapeutische Maßnahmen können gezielter bestimmt und eingesetzt werden.

Kernspintomographie: Nicht nur das Magnetfeld ist entscheidend

Mit der Kernspintomographie (auch: Magnetresonanztomographie) werden Schnittbilder aus dem Inneren des menschlichen Körpers aufgenommen. Anders als die Computertomographie arbeitet sie nicht mit Röntgenstrahlen, sondern mit Magnetfeldern und Radiowellen. Damit lassen sich die Wasserstoffprotonen (Atomkerne) im Körper so beeinflussen, dass sie spezifische Signale an ein Empfangsgerät senden. Am Bildschirm werden diese so interpretiert, dass eine sehr präzise Aufnahme des untersuchten Körperabschnittes entsteht. Genutzt wird dieses Verfahren vor allem zur Darstellung von Weichteilgewebe, Organen und des Gehirns. Die Bildqualität der Aufnahmen hängt unter anderem zusammen mit der Stärke des Magnetfeldes: Diese wird in der Einheit Tesla ausgewiesen. In der klinischen Praxis sind heutzutage Geräte mit Feldstärken zwischen 1 und 1,5 Tesla am häufigsten. Geräte mit deutlich höheren Feldstärken als 3 Tesla werden derzeit nur für Forschungszwecke genutzt. Neben der Feldstärke beeinflussen noch weitere Parameter die Bildqualität, etwa die Anzahl der Empfangskanäle, die die Resonanzsignale aus dem Inneren des Körpers aufnehmen und verarbeiten. Für Untersuchungen bestimmter Körperteile werden spezielle Spulen genutzt, die an dem zu untersuchenden Körperabschnitt angebracht werden und damit eine effektivere Signalmessung ermöglichen.

Weitere Informationen

Prof. Dr. Denise Manahan-Vaughan, Abteilung für Neurophysiologie, Medizinische Fakultät der RUB, 44780 Bochum, Tel. 0234/32-27927, E-Mail: Denise.Manahan-Vaughan@rub.de

Prof. Dr. Martin Tegenthoff, Direktor der Klinik für Neurologie, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil GmbH Bürkle-de-la-Camp Platz 1, 44789 Bochum, Tel.: 0234/302-6828, E-Mail: martin.tegenthoff@bergmannsheil.de

Dr. Josef König | idw
Weitere Informationen:
http://www.bergmannsheil.de

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Virtual Reality in der Medizin: Neue Chancen für Diagnostik und Operationsplanung
07.12.2016 | Universität Basel

nachricht Patienten-Monitoring in der eigenen Wohnung − Sensorenanzug für Schlaganfallpatienten
06.12.2016 | University of Twente

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie