Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

ETH Zürich entwickelt kleinste Spritze der Welt

26.06.2009
Wissenschaftler vom Institut für Biomedizinische Technik der ETH Zürich haben eine Nanospritze entwickelt, mit welcher Medikamente, DNA und RNA in eine einzelne Zelle injiziert werden können, ohne diese zu verletzen. Neben biologischen Anwendungen könnte das Verfahren auch zur Produktion von Mikroelektronik verwendet werden.

Eigentlich wollte Dr. Tomaso Zambelli das Rasterkraftmikroskop (Atomic Force Microscope, kurz AFM) wie üblich dazu nutzen, einzelne Zellen abzubilden. Zu-sammen mit seinen Kollegen vom Institut für biomedizinische Technik der ETH Zürich bemerkte er jedoch, dass alle Teile vorhanden sind, um eine Nanospritze zu entwickeln.

Entstanden ist aus dieser Idee das "Fluid force microscope" (FluidFM), die zurzeit kleinste, automatisierte Spritze der Welt. Vorgestellt wurde die Neuentwicklung der Gruppe von János Vörös, Professor am Institut für Biomedizinische Technik der ETH Zürich, im Wissenschaftsmagazin Nano Letters.

Fingerspitzengefühl gefragt
Das Einwirken auf einzelne Zellen erfordert viel manuelles Geschick: Über Glasmikropipetten, die mit Hilfe eines Mikromanipulators unter einem lichtstarken Mikroskop bedient werden, spritzt man der Zelle einen potentiellen Wirkstoff. Mit derselben Apparatur können feinste elektrische Signale in der Zelle gemessen werden, woraus sich Rückschlüsse auf die Aktivität von Proteinen der Membran ziehen lassen. Für diese Experimente müssen die Forschenden viel Erfahrung mitbringen: Das Verfahren ist fehleranfällig und oft werden die Zellen bei solchen Untersuchungen beschädigt.

Zambelli hat vom klassischen AFM die ultra-spitze Messnadel und die sensitive Kraftkontrolle über einen Laserstrahl übernommen. Diese Technologie kombinierte er mit den Erfahrungen von CSEM SA Neuchâtel, welches auf Mikrofabrikation spezialisiert ist und eine der Kernkomponenten des Systems herstellt: Im Verbindungsstück von der Messnadel zum Steuerungsgerät - dem sogenannten Cantilever - haben die Wissenschaftler einen Mikrokanal von 500 Nanometern Durchmesser verlegt, der es erlaubt, Flüssigkeiten und Lösungen über die Messnadel in eine Zelle einzuspritzen. Die Öffnung an der Nadelspitze hat einen Durchmesser von 200 Nanometern (500 Mal kleiner als der Durchmesser eines menschlichen Haares). Über diese Spitze können Medikamentenwirkstoffe, DNA oder RNA in eine Zelle injiziert werden. Die Auswirkungen dieser Injektionen lassen sich dann beobachten. Im Gegensatz zum herkömmlichen manuellen System, kann dabei die Kraft der Nadel auf die Zelle so präzise dosiert werden, dass diese nicht unnötig verletzt wird.

Virus in einzelne Zelle gespritzt
Die Forschenden haben gemeinsam mit verschiedenen Professoren des Biologie-Departments der ETH Zürich nach Anwendungen des FluidFM gesucht. Zusammen mit der Gruppe von Ari Helenius vom Institut für Biochemie der ETH Zürich testete man zum Beispiel, wie ein Virus in eine einzelne Zelle eindringt. Als nächstes versuchen sie, eine exakte Probe aus einer Zelle zu entnehmen.

Mit Hilfe dieser Technologie können auch schwache elektrische Signale gemessen werden. Mit einem integrierten System wäre es möglich, einzelne Zellen während der Injektion von Wirkstoffen in Echtzeit zu beobachten - alles mit ein und derselben Apparatur. "Für die Biologie und die Pharmaforschung wäre dies ein riesiger Fortschritt. Damit würden erstmals vollautomatisierte Selektionsverfahren ermöglicht, mit welchen die Folgen von Medikamentenwirkstoffen auf Membranproteine beobachtet werden könnte", erläutert Zambelli.

Spritze für Mikrochips
Vielversprechend ist das FluidFM nicht nur im Hinblick auf Anwendungen in der Biologie, sondern auch in der Physik, Chemie und den Materialwissenschaften. Besonders für die Produktion von immer stärker miniaturisierten Mikrochips und Mikrosensoren eröffnen sich durch das "Fluid force microscope" neue Möglich-keiten. Über die hohle Messnadel könnte zum Beispiel eine hauchdünne Metallspur aufgetragen und so elektrische Schaltungen im Nanometer-Massstab aufgebaut werden.

Die beiden Doktoranden Michael Gabi und Pascal Behr aus Zambellis Team möchten das Gerät im eigens dafür gegründeten ETH-Spin-off "Cytosurge" selbständig zur Marktreife weiterentwickeln. Bereits heute stehen zwei Prototypen des Gerätes in Zambellis Labor, die gemeinsam mit Biologen getestet werden.

Originalbeitrag: A. Meister et al.: FluidFM: Combining Atomic Force Microscopy and Nanofluidics in a Uni-versal Liquid Delivery System for Single Cell Applications and Beyond. Nanoletters. 2009; 9: 2501-2507. DOI: 10.1021/nl901384x

Franziska Schmid | idw
Weitere Informationen:
http://www.ethlife.ethz.ch/archive_articles/090626_nanoinjection_sch/index
http://www.ethz.ch

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht UKR setzt auf roboterassistierte Wirbelsäulenchirurgie
02.12.2016 | Universitätsklinikum Regensburg (UKR)

nachricht Neu entwickeltes Plasmaskalpell ermöglicht schonende Operationen
22.11.2016 | FH Aachen

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Höhere Energieeffizienz durch Brennhilfsmittel aus Porenkeramik

05.12.2016 | Energie und Elektrotechnik

Neue Perspektiven durch gespiegelte Systeme

05.12.2016 | Physik Astronomie

Forscher finden «Krebssignatur» in Proteinen

05.12.2016 | Biowissenschaften Chemie