Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chips retten Leben: TU Hamburg und Uniklinik Eppendorf entwickeln Nanoelektronik für die Medizin

12.12.2012
Winzig klein sind die Chips, die Großartiges zu leisten vermögen: Sie können zum Beispiel Patienten, die an einem Aneurysma erkrankt sind, das Leben retten.

Entwickelt wird die medizintechnische Innovation zurzeit in einer der bisher größten gemeinsamen Forschungsvorhaben zwischen der TU Hamburg-Harburg (TUHH) und dem Universitätsklinikum Eppendorf (UKE):

Im Mittelpunkt des mit 2,5 Millionen Euro vom Bundesforschungsministeriums finanzierten interdisziplinären Projekts, an dem auch das Fraunhofer-Institut Dresden sowie mittelständische Unternehmen beteiligt sind, stehen außer an einem Aneurysma leidende auch durch einen Schlaganfall erkrankte Menschen.

Jeder zehnte Mann – und bis zu zwei Prozent der Frauen – erleidet eine Vergrößerung der Hauptschlagader im Bauch. Dieses Aorten-Aneurysma ist lebensgefährlich. Denn an dieser vergrößerten Stelle kann die Aorta einen Riss bekommen, und diese Ruptur überlebt nur jeder zehnte Patient. In der medizinischen Praxis wird zur Therapie ein Stent – das ist ein röhrenförmiges Implantat – dort in die Hauptschlagader im Bauch eingeführt, wo es zu der typischen sackartigen Ausbeulung gekommen ist. Dieses Implantat verschließt die Aorta so, dass das Aneurysma vom Blutfluss abgeschnitten ist. Das Problem: In bis zu 40 Prozent der Fälle bilden sich im Lauf meist von Jahren undichte Stellen. Das Aneurysma kann platzen, und es tritt Blut in den Bauchraum.
Chips retten Leben

In ihrem gemeinsamen Projekt wollen die Ingenieure der TUHH und Ärzte am UKE diese tickende Zeitbombe im Körper entschärfen, in dem sie den Stent mit Hilfe der Nanoelektronik optimieren. Ausgestattet mit im Endzustand bis zu 64 Sensoren, die jeweils nicht größer sind als 0,25 Quadratmillimeter und einem nur etwa zehnfach größeren Schaltkreis, übernimmt dieses Nanoelektronik-Implantat zusätzlich eine überlebenswichtige Überwachungsfunktion. Es misst die Druckverhältnisse im Aneurysma und überträgt die Daten zu einem mobilen Lesegerät, das nicht größer ist als eine Streichholzschachtel. Arzt und Patienten können so die Daten jederzeit und überall ablesen.

Intelligente Miniaturen im Körper

„Die Nanoelektronik ist so klein und leistungsfähig geworden, dass sich daraus viele neue Möglichkeiten für die Medizintechnik eröffnet haben, die vor zehn Jahren noch undenkbar gewesen wären“, sagt Prof. Dr.-Ing. Wolfgang Krautschneider, Koordinator des Forschungsschwerpunktes Regeneration, Implantate und Medizintechnik an der TUHH. Den medizinischen Part dieser Forschung übernimmt die Klinik und Poliklinik für Diagnostische und Interventionelle Radiologie am UKE. Ihr ärztlicher Leiter, Prof. Dr. med. Gerhard Adam: „Das Spannende an dieser Kooperation ist für uns die Nutzbarmachung der Nanoelektronik für die Medizin. Der entwickelte Sensor könnte dazu führen, dass wir bald den Blutdruck im Aneurysma messen können. Dadurch können undichte Stellen früh erkannt werden ohne den Patienten oder die Patientin mittels Ultraschall oder Computertomographie in regelmäßigen Intervallen zu untersuchen. Eine große Erleichterung für die Patienten und langfristig eine Kostenersparnis.“

Elektrowellen bringen Bewegung in steife Muskeln
Prof. Dr. Christian Gerloff, ärztlicher Leiter der Klinik und Poliklinik für Neurologie, möchte die Nanoelektronik für Schlaganfall-Patienten nutzbar machen. „Dadurch, dass wir unser neurologisches Wissen über Gehirn, Nerven und Muskeln mit den Kenntnissen der TUHH über Nanotechnologie kombinieren, eröffnen wir technologisch ganz neue Dimensionen auf dem Weg zu neuen Behandlungsmethoden.“ Etwa 250 000 Bürger erleiden jedes Jahr in Deutschland einen Schlaganfall. Fast zwei Drittel dieser Patienten sind anschließend durch dauerhafte Behinderungen im beruflichen und privaten Leben erheblich beeinträchtigt. Sehr häufig betroffen ist die Handfunktion in deren Folge, sich die Faust nicht mehr öffnen lässt.“

Die Neurowissenschaftler des UKE und die Ingenieure der TUHH wollen nun ein System entwickeln, das den Alltag dieser Patienten erleichtert. Erforscht wird ein kleines tragbares Gerät, das elektrische Impulse an Nerven und Muskeln sendet und beispielsweise dafür sorgt, dass sich die Faust öffnet. Ausgelöst werden diese Impulse durch eine Muskelbewegung der nicht-gelähmten Körperseite.

Für Rückfragen
TU Hamburg
Institut für Nanoelektronik
Prof. Dr.-Ing. Wolfgang Krautschneider
Tel.: 040/ 42878-3030
E-Mail: krautschneider@tuhh.de

TU Hamburg
Pressesprecherin
Jutta Katharina Werner
Tel.: 040/ 42878-4321
E-Mail: j.werner@tuhh.de

Jutta Katharina Werner | idw
Weitere Informationen:
http://www.tuhh.de

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Deutschlandweit erstes Gerät für hoch fokussierten Ultraschall bei Tremor und Parkinson
11.04.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Nuklearmedizinische Herzuntersuchungen – Neue Techniken, größere Präzision
09.04.2018 | Deutsche Gesellschaft für Nuklearmedizin e.V.

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics