Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

So sieht Botox aus: Forscher entschlüsseln Funktion und komplizierte Raumstruktur des Neurotoxins

15.07.2013
MHH-Forscher fanden heraus, wie der Botulinum-Komplex unbeschadet ins Blut gelangt / Innovative Therapie von Botulismus in Aussicht / Veröffentlichung in PLOS Pathogens

Wissenschaftler der Medizinischen Hochschule Hannover (MHH) haben zusammen mit amerikanischen Kollegen aufgeklärt, wie das Bakterium Clostridium botulinum sein Nervengift in das Blut des Menschen schleust. Das Team um Dr. Andreas Rummel vom Institut für Toxikologie veröffentlichte gemeinsam mit Professor Rongsheng Jin, University of California, Irvine, Kalifornien seine Ergebnisse in der angesehenen Fachzeitschrift „PLOS Pathogens“.


Raumstruktur des Botulinum-Komplexes. Quelle „Rummel/MHH“

Mit Botulinumtoxin werden schwere Bewegungsstörungen erfolgreich behandelt – als „Botox“ spielt es bei kosmetischer Faltenglättung eine bekannte Rolle. Wie aber der Wirkstoff des bereits 1989 als Arzneimittel für seltene Leiden (orphan drug) zugelassenen Medikaments aussieht, war bis dato unbekannt. Ursprünglich bekannt wurde das Botulinum-Toxin durch die heutzutage seltene Krankheit Botulismus, eine tödliche Lebensmittelvergiftungen. Dabei gelangt dieses hochmolekulare Eiweiß ins Blut.

„Vergangenes Jahr konnten wir aufklären, wie ein Schutzprotein das Toxin einpackt und so gegen das feindliche Milieu in Magen und Dünndarm beschützt,“ sagt Dr. Rummel, „jetzt verstehen wir auch, wie es an der Dünndarmwand andockt und das Toxin in die Blutbahn entlässt“. Dr. Rummel und seine Mitarbeiterinnen Anna Magdalena Kruel, Thi Tuc Nghi Le, Jasmin Strotmeier und Nadja Krez fanden heraus, dass sich dazu drei weitere Proteine zu einem zwölfteiligen Subkomplex zusammenlagern. „Die Struktur erinnert entfernt an das Mondlandemodul der Apollo-Mission“, erklärt Dr. Rummel. Dieser sogenannte HA-Komplex bindet über bis zu neun Kontaktpunkte an Zucker auf der Oberfläche des Dünndarmepithels und öffnet anschließend Zell-Zell-Kontakte, um das Toxin effizient in die Blutbahn gelangen zu lassen.

Den Wissenschaftlern gelang es mit Hilfe von Elektronenmikroskopie und Röntgenstrukturanalysen die Raumstruktur des 14-teiligen Komplexes aufzuklären, der aus mehr als 6500 Aminosäuren besteht. Zellbiologische Experimente konnten die funktionelle Rolle der einzelnen Bestandteile ermitteln. Die Erkenntnis der Bindung an Zuckermoleküle erlaubte es den Forschern, Substanzen in Mäusen erfolgreich zu testen, die die Resorption des Toxins verhindern. „Dies ist eine völlig neue Therapiestrategie gegen Botulismus, die im Falle einer bioterroristischen Bedrohung mit dem Botulinum-Neurotoxin auch präventiv eingesetzt werden könnte“ erläutert Dr. Rummel.

Weitere Informationen erhalten Sie von Dr. Andreas Rummel, Telefon (0511) 532-2819, rummel.andreas@mh-hannover.de.

Originalpublikation: "Structure of a bimodular botulinum neurotoxin complex provides insight into its oral toxicity" by Kwangkook Lee, Shenyan Gu, Lei Jin, Thi Tuc Nghi Le, Luisa W. Cheng, Jasmin Strotmeier, Anna Magdalena Kruel, Guorui Yao, Kay Perry, Andreas Rummel* and Rongsheng Jin*, PPATHOGENS-D-13-01100

Stefan Zorn | idw
Weitere Informationen:
http://www.mh-hannover.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Stoßlüften ist besser als gekippte Fenster
29.03.2017 | Technische Universität München

nachricht Dimethylfumarat – eine neue Behandlungsoption für Lymphome
28.03.2017 | Wilhelm Sander-Stiftung

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten