Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schlaganfall: Neuer Ansatz gegen die Folgen

30.03.2011
Flüssigkeitsansammlungen im Gehirn, die nach einem Schlaganfall auftreten, sind bislang nur schwer behandelbar. Forscher der Universität Würzburg haben jetzt eine Lösung für das Problem gefunden. Die Fachzeitschrift Stroke berichtet über ihre Arbeit.

Mehr als 250.000 Menschen in Deutschland erleiden jährlich einen Schlaganfall, etwa jeder Dritte stirbt innerhalb des ersten Jahres an den Folgen. Der Schlaganfall ist damit die dritthäufigste Todesursache in Deutschland. Seine Therapie stellt Mediziner häufig noch vor große Probleme: Durch den Verschluss einer Hirnarterie gehen nämlich nicht nur die minderdurchbluteten Nervenzellen zugrunde. Es kommt im Verlauf auch zu einem Austritt von Flüssigkeit aus den Gefäßen in das Gehirn – ein sogenanntes Hirnödem entsteht.

Dieses Ödem lässt das Gewebe anschwellen, der Druck auf die Umgebung wächst und führt schließlich dazu, dass auch eigentlich gesunde Gehirnbereiche zerstört werden. Der Grund: Das Gehirn ist in der knöchernen Hülle des Schädels gefangen und kann sich nicht ausdehnen.

Hirnödem ist nicht gleich Hirnödem

Kein Wunder, dass Mediziner alles versuchen, damit sich nach einem Schlaganfall gar nicht erst ein Hirnödem entwickeln kann – bisher allerdings mit nur geringem Erfolg. „Hirnödeme, die beispielsweise bei Hirntumoren oder einem Multiple-Sklerose-Schub auftreten, lassen sich relativ gut mit Glukocortikoiden, etwa Kortison behandeln“, erklärt Professorin Dr. Carola Förster von der Universitätsklinik Würzburg. Merkwürdigerweise erweisen sich die gleichen Medikamente beim Schlaganfall als unwirksam oder sogar schädlich.

Der Arbeitsgruppe um Carola Förster ist es nun gelungen, die Ursache für diese unterschiedliche Wirksamkeit von Steroiden bei verschiedenen Erkrankungen mit Hirnödem zu entschlüsseln. Die Fachzeitschrift Stroke, das renommierte Schlaganfall-Journal der Amerikanischen Herzgesellschaft, berichtet in ihrer neuesten Ausgabe über diese Arbeit.

Förster ist Zellbiologin und molekulare Endokrinologin. Die Professorin leitet die Abteilung für Experimentelle Anästhesiologie an der Klinik und Poliklinik für Anästhesiologie. Die Blut-Hirn-Schranke, die normalerweise dafür sorgt, dass das zentrale Nervensystem sehr gut gegenüber Einflüssen von außen geschützt ist, ist einer ihrer Forschungsschwerpunkte.

Sauerstoffmangel ist der auslösende Faktor

„Bei einem Schlaganfall führt der Sauerstoffmangel in dem betroffenen Gebiet dazu, dass die Hirn-Endothelzellen, also Zellen, die die Gehirngefäße auskleiden, löchriger werden und deshalb Flüssigkeiten leichter durchlassen“, erklärt Förster. Eine Reparatur der löchrigen Barriere mit der Hilfe von Glukocortikoiden sei nach einem Schlaganfall nicht mehr möglich.

Den Grund dafür hat Förster jetzt entdeckt: Der Sauerstoffentzug führt in den Endothelzellen dazu, dass Glukocortikoid-Rezeptoren, die die Wirkung dieser Steroide vermitteln, übermäßig stark abgebaut werden. Dadurch verlieren die Zellen die Fähigkeit, auf eine Glukocortikoid-Therapie anzusprechen. „Dieser Effekt scheint spezifisch für Gehirngefäße zu sein“, so Förster.

Auch den Verantwortlichen für diesen Abbau konnten Förster und ihr Team identifizieren. Es handelt sich um ein Proteasom, ein biologisches System, das aus mehreren Enzymen besteht. Diese Beobachtung eröffnet den Wissenschaftlern neue Wege zu einer effektiven Behandlung: Durch eine frühzeitige Blockade des Proteasoms können sie die Empfänglichkeit der Endothelzellen für Glukocortikoid wiederherstellen. Dadurch kann das Hirnödem nach einem Schlaganfall ebenfalls durch Mittel wie Kortison reduziert werden.

Erfolg auch im Tierversuch
Der neue Ansatz hat im Tierversuch bereits seine Effektivität unter Beweis gestellt, wie der Würzburger Neurologe Dr. Christoph Kleinschnitz nachweisen konnte.

„Das Besondere an unserer Studie ist, dass die Ergebnisse nicht nur in Zellkultur zu beobachten waren, sondern sich auch auf Mäuse übertragen ließen, die einen Schlaganfall erlitten hatten, also im lebenden Organismus von Bedeutung sind“, erklärt Kleinschnitz. Die Untersuchungen könnten nun die Grundlage dafür liefern, um lebensbedrohliche Hirnschwellungen bei Schlaganfallpatienten zukünftig besser behandelbar zu machen.

Erfindung angemeldet

Ihre Erfindung hat Carola Förster bereits angemeldet. Bis ein Medikament auf dem Markt ist, das beim Menschen zu Einsatz kommt, können ihrer Schätzung nach allerdings noch zehn Jahre vergehen.

Finanziell gefördert haben die Studie die Deutsche Forschungsgemeinschaft im Rahmen des Sonderforschungsbereichs 688 und die Europäische Union über den Forschungsverbund „Neurobid: Neuroscience on Barrieres in Development“.

Glucocorticoid Insensitivity at the Hypoxic Blood–Brain Barrier Can Be Reversed by Inhibition of the Proteasome; Christoph Kleinschnitz, Kinga Blecharz, Timo Kahles, Tobias Schwarz, Peter Kraft, Kerstin Göbel, Sven G. Meuth, Malgorzata Burek, Thomas Thum, Guido Stoll, Carola Förster, PhD. Stroke. doi: 10.1161/STROKEAHA.110.592238

Kontakt:
Prof. Dr. Carola Förster, T: (0931) 201-30012, E-Mail: foerster_c@klinik.uni-wuerzburg.de

PD. Dr. Christoph Kleinschnitz, T (0931) 201-23755, E-Mail: christoph.kleinschnitz@mail.uni-wuerzburg.de

Gunnar Bartsch | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz: Nierenschädigungen therapieren, bevor Symptome auftreten
20.09.2017 | Universitätsklinikum Regensburg (UKR)

nachricht Neuer Ansatz zur Therapie der diabetischen Nephropathie
19.09.2017 | Universitätsklinikum Magdeburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie