Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn der Reparaturdienst versagt

26.04.2013
Normalerweise können Zellen Schäden am Erbgut selbst reparieren. Wenn aber Gene, die solche Reparaturmechanismen steuern, beschädigt sind, führt dies in der Regel zu schweren Erkrankungen. Mutationen eines unerwarteten Gens haben Würzburger Wissenschaftler jetzt im Fall der Fanconi-Anämie entdeckt.
Sie sind selten, aber für die Betroffenen äußerst gravierend: Erkrankungen, die mit DNA-Reparatur-Defekten einhergehen. Je nachdem, welcher Reparaturprozess gestört ist, führen sie zu sehr unterschiedlichen Krankheitsbildern.

Selten, aber gefährlich: Xeroderma pigmentosum

Bei der Hauterkrankung Xeroderma pigmentosum beispielsweise sind sogenannte XP-Proteine krankhaft verändert oder fehlen gleich ganz. Die Patienten reagieren überempfindlich auf Sonnenlicht, speziell auf dessen UV-Komponente. Ihre Haut rötet sich bereits nach minimaler Sonnenexposition stark; später bilden sich Entzündungen, Geschwüre und Narben. Auch gut- und bösartige Hauttumoren können sich entwickeln.

„Tritt diese Krankheit bereits in jungen Jahren auf, ist typischerweise eines der sogenannten XP-Gene mutiert“, erklärt Detlev Schindler, Professor am Institut für Humangenetik der Universität Würzburg. Die Mutation führt zu einem Defekt des entsprechenden Proteins, die Zelle ist dann nicht mehr in der Lage, bestimmte DNA-Schäden zu entfernen.

„Der gestörte Vorgang heißt in diesem Fall Nukleotid-Exzisions-Reparatur“, sagt Schindler. Mit diesem mehrstufigen Ausschneide- und Flickvorgang können Zellen normalerweise UV-Licht-induzierte Veränderungen benachbarter Basen, sogenannte Pyrimidin-Dimere, entfernen. Diese würden sonst die Helixstruktur des DNA-Strangs deformieren und Ablese- und Replikationsvorgänge stören.
Ist ein bestimmtes XP-Gen mutiert – Wissenschaftler sprechen hier von „Defekten des Typs F“ –, können Xeroderma-pigmentosum-Betroffene auch untypische Symptome zeigen, die von Nierenfehlbildungen über Knochenmarkversagen bis zur vorzeitigen Alterung, im Fachausdruck Progerie genannt, reichen.

Publikation im American Journal of Human Genetics

Nun berichtet eine Arbeit in der aktuellen Ausgabe des American Journal of Human Genetics, an der Schindler und seine Mitarbeiter vom Institut für Humangenetik maßgeblich beteiligt waren, über zwei Patienten, bei denen Mutationen des XPF-Gens die Erkrankung „Fanconi-Anämie“ verursachen. „Wir konnten zeigen, dass in diesem Fall eine andere Art von DNA-Läsionen, nämlich unerwünschte Doppelstrang-Quervernetzungen, nicht mehr repariert werden können“, erklärt Schindler.

In der Arbeit zeigen die Forscher, dass der XPF-Faktor ein zentrales Mitglied des DNA-Reparatur-Netzwerks mit vielen Funktionen ist. Je nachdem, an welchen Stellen die Defekte liegen, sind unterschiedliche Reparaturmechanismen gestört. „Dann sind entweder die Reparatur von DNA-Einzel- oder Doppelstrangläsionen, von Pyrimidin-Dimeren oder kovalenten Interstrangverbindungen oder beides zusammen gestört“, erklärt Schindler.

Somit können Mutationen in ein und demselben Gen drei verschiedene Erbkrankheiten verursachen: Xeroderma pigmentosum, Fanconi-Anämie oder das XFE-Progeriesyndrom. Die untypischen Xeroderma-pigmentosum-Symptome interpretieren die Wissenschaftler als Übergänge zur Fanconi-Anämie.

Die Fanconi-Anämie

Bei der Fanconi-Anämie handelt es sich um eine genetisch bedingte Frühform von Knochenmarkversagen, die mit einem bereits im jungen Erwachsenenalter stark erhöhten Krebsrisiko einhergeht. Im Verbund mit Arbeitsgruppen aus Spanien, den Niederlanden, England und den USA hat die Arbeitsgruppe von Detlev Schindler zur Aufklärung der genetischen Ursachen dieser Erkrankung beigetragen. Im Verlauf der letzten Jahre war die Würzburger Arbeitsgruppe an der Identifizierung von mehreren neuen Fanconi-Anämie-Genen, kurz FANC-Genen, beteiligt.
Damit sind inzwischen 16 FANC-Gene bekannt, deren Defekte diese schwerwiegende Erkrankung auslösen. „Die für die Lebensfähigkeit unserer Körperzellen essentielle Funktion, als sogenannte ‚Caretaker‘-Gene Unregelmäßigkeiten in der DNA-Doppelhelix zu erkennen und unschädlich zu machen, können die FANC-Gene jedoch nur bewerkstelligen, wenn sie nicht, wie im Falle der Fanconi-Anämie-Erkrankung, selbst von Erbgutveränderungen betroffen sind“, sagt Schindler.

Wenn nur eines der FANC-Gene nicht oder nicht richtig funktioniert, häufen sich Schäden im Erbgut an mit den entsprechenden Auswirkungen auf die Gesundheit. „Um möglichst gesund alt zu werden, um Krebs und Blutarmut möglichst lange zu vermeiden, brauchen wir also intakte FANC-Gene“, so der Humangenetiker.

Forschung an seltenen Krankheiten

Warum beschäftigen sich die Wissenschaftler eigentlich mit solch seltenen Erbkrankheiten? „Wenn sie bereits in einem frühen Lebensalter auftreten, sind in der Regel Mutationen von einzelnen Genen dafür verantwortlich“, sagt Schindler. Diese seien dann in vielen Fällen auch an der Entstehung häufiger Krankheitsformen des höheren Lebensalters beteiligt. Bei der Alzheimer-Erkrankung beispielsweise habe sich gezeigt, dass die seltenen Frühformen der Erkrankung, die vor dem 50. Lebensjahr beginnen, durch Defekte in einzelnen Genen ausgelöst werden. Durch die Analyse der normalen Funktion dieser „Alzheimer-Gene“ konnten die Forscher die molekularen Ursachen aufklären, die auch den viel häufigeren Spätformen der Alzheimer-Erkrankung zugrunde liegen.

Auch im Fall der Fanconi-Anämie gibt es solchen „Nebennutzen“: „Während bei Menschen mit zwei defekten Kopien eines FANC-Gens die lebensbedrohliche Fanconi-Anämie zum Ausbruch kommt, haben Frauen mit nur einer defekten Kopie eines FANC-Gens in manchen Fällen ein deutlich erhöhtes Risiko für Brust- und Eierstockkrebs“, erklärt Schindler. Diese Möglichkeit werde nun auch für Mutationen des neu entdeckten FANC-Gens (XPF=FANCQ) untersucht. Die Aufklärung der Gene, deren Defekte die seltene Fanconi-Anämie bedingen, hat also auch zu einem besseren Verständnis sowohl der Ursachen als auch der Therapiemöglichkeiten bei familiären Formen von Brust- und Eierstockkrebs geführt.
Mit der Nukleotid-Exzisions-Reparatur, insbesondere dem XPD-Protein, beschäftigt sich an der Universität Würzburg auch Professor Caroline Kisker und ihre Arbeitsgruppe vom Rudolf-Virchow Zentrum. Ihr gelang die Strukturaufklärung dieses ebenfalls mit mehreren Erkrankungen verbundenen Proteins; mit ihr arbeiten die Humangenetiker eng zusammen.

Mutations in ERCC4, encoding the DNA repair endonuclease XPF, cause Fanconi anemia. Massimo Bogliolo et al. American Journal of Human Genetics 92, 1-7, May 2, 2013 (electronically published ahead of print April 25, 2013, http://dx.doi.org/10.1016/j.ajhg.2013.04.002

Kontakt
Prof. Dr. Detlev Schindler, T: (0931) 31-88075,
E-Mail: schindler@biozentrum.uni-wuerzburg.de

Gunnar Bartsch | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Entschlüsselung von Kommunikationswegen zwischen Tumor- und Immunzellen beim Eierstockkrebs
06.12.2016 | Wilhelm Sander-Stiftung

nachricht Tempo-Daten für das „Navi“ im Kopf
06.12.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nährstoffhaushalt einer neuentdeckten “Todeszone” im Indischen Ozean auf der Kippe

06.12.2016 | Geowissenschaften

Entschlüsselung von Kommunikationswegen zwischen Tumor- und Immunzellen beim Eierstockkrebs

06.12.2016 | Medizin Gesundheit

Bioabbaubare Polymer-Beschichtung für Implantate

06.12.2016 | Materialwissenschaften