Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Raffiniert verpackte Genwirkstoffe - Nanopartikel gegen immunologische Erkrankungen

18.09.2013
Aufgrund einer Förderung vom Sächsischen Wissenschaftsministerium in Höhe von 168.000 Euro kann eine fachübergreifende Kooperation an der Universität Leipzig die Idee vertiefen, Gentherapeutika mittels Nanopartikeln gezielt in Zellen des Immunsystems einzuschleusen.

Die Forscher wollen eine Plattformtechnologie entwickeln, die nicht nur bei immunologischen Erkrankungen eingesetzt werden kann. Die Förderung läuft bis Ende 2014. Eine sächsische Firma hat bereits Interesse an der viel versprechenden Technologie signalisiert.

Die neue Arbeitsgruppe um Dr. Jana Burkhardt (Translationszentrum für Regenerative Medizin TRM) und Prof. Achim Aigner (Leiter der Selbständigen Abteilung für Klinische Pharmakologie am Rudolf-Boehm-Institut der Medizinischen Fakultät) hat ihre Arbeit aufgenommen. Ziel der fachübergreifenden Zusammenarbeit ist es, das Immunsystem durch biologische Stoffe zu hemmen, die zu der neuartigen Medikamentklasse der Gen-Therapeutika gehören. Dafür steuern die Projektpartner unterschiedliches Fachwissen bei:

Die Biochemikerin Jana Burkhardt ist auf genetische Grundlagen infektionsabwehrender Zellen des Immunsystems spezialisiert, der Pharmakologe Achim Aigner auf therapeutische Nanopartikel und ihre klinische Anwendung. Gemeinsam entwickeln sie nun Wege, wie kleinste Pakete (Nanopartikel) gezielt bestimmte Immunzellen ansteuern können. Die in ihnen verpackten genetischen Botschaften (Nukleinsäuren DNA oder RNA) sollen krankheitsrelevante Prozesse des zukünftigen Patienten positiv beeinflussen.

Derart behandelte Stammzell-Transplantate werden beispielsweise nicht mehr vom Immunsystem abgestoßen, weil die sonst auftretenden entzündlichen Signale unterdrückt werden können. Eine besondere Herausforderung bei jeder Art von Gentherapie ist das Einschleusen der genetischen Botschaften in die Zielzellen. Sie müssen nicht nur ihren Zielort sicher und effektiv erreichen, sondern dürfen auch keine Nebenwirkungen in anderen Geweben verursachen. Ein Stoff hat sich in der Vergangenheit als besonders geeignet herausgestellt: Polyethylenimin (kurz PEI), Aigner hat mit dem Molekül langjährige Erfahrungen und wird es nun auf die Bedürfnisse der Immun-Genetikerin Jana Burkhardt anpassen.

Molekularbiologische Herleitung

Die Grundidee, Gene gezielt auszuschalten, beruht auf der mit dem Nobelpreis gekürten Methode der "RNA-Interferenz", erläutert Aigner seine Weiterentwicklung: "Dabei werden in die Zelle Nukleinsäuren in Form von doppelsträngigen RNA-Molekülen eingeschleust. Unter pharmakologischer Sicht sind sie jedoch ein Alptraum, weil sie zu groß, zu stark geladen und zu instabil sind. Hier kommen Nanopartikel ins Spiel, die wir als Verpackung entwickelt haben. Uns ist es nicht nur gelungen, sie in einen intakten Organismus einzuschleusen, wir können mit ihnen noch dazu ein beliebiges, auszuschaltendes Gen ansteuern."

Die Nanopartikel erfüllen dabei gleich drei wichtige Aufgaben: Sie schützen die instabilen Nukleinsäuren, die gleichzeitig kompakt in den Nanopartikeln verdichtet sind, so dass sie leichter von der Zelle aufgenommen werden. Und schließlich vermitteln die Nanopartikel, dass die Nukleinsäuren innerhalb der Zelle wieder freigesetzt werden. "Unsere Nanopartikel funktionieren schon", so Aigner. "Jetzt wollen wir eine neue Generation entwickeln. Ihre Oberfläche soll so gestaltet werden, dass sie spezifische Zielzellen ansteuern, beispielsweise T-Zellen."

T(hymus)-Zellen spielen eine wichtige Rolle im Immunsystem, indem sie Fremdkörper wie Infektionserreger nach dem Schlüssel-Schloss-Prinzip über Rezeptoren erkennen. "Das Problem in gentherapeutischen Ansätzen für Immunerkrankungen liegt darin, dass T-Zellen außerordentlich schwer zu erreichen sind. Dadurch ist auch ein Therapeutikum schwer einzuschleusen", sagt Burkhardt.

"Erste Versuche mit unseren speziell gebauten Nanopartikeln waren vielversprechend und haben die Abstoßung von Stammzell-Transplantaten verhindert." Da dass Verfahren prinzipiell für jede Körperzelle und jedes Ziel-Gen anwendbar ist und enorme Möglichkeiten eröffnet, soll das Projekt auch eine Plattform-Technologie entwickeln. Denn die Übertragung auf andere Erkrankungen des Immunsystems, wie die häufige Rheumatoide Arthritis oder Asthma, ist durchaus denkbar. Eine sächsische Firma hat bereits Interesse bekundet, die Technologie in ihre Produktion aufzunehmen.

Projektförderung bis 2014

Das Leipziger Projekt "Verfahren zur effizienten, Nanopartikel-vermittelten Einschleusung therapeutischer Nukleinsäuren in Zellen des Immunsystems zur Gentherapie immunologischer Erkrankungen" wurde nach einem Auswahlverfahren in die Förderung des Freistaates Sachsen von Forschungsprojekten der Biotechnologie und Lebenswissenschaften aufgenommen. Die Gesamtförderung in Höhe von 168.000 Euro läuft bis Ende 2014.

Weitere Informationen:

Prof. Dr. Achim Aigner
Selbständigen Abteilung für Klinische Pharmakologie und Toxikologie
Rudolf-Boehm-Institut
Telefon: +49 341 97-24660
E-Mail: achim.aigner@medizin.uni-leipzig.de
Web: www.uni-leipzig.de/~pharma
Prof. Dr. Frank Emmrich
Direktor TRM
Telefon: +49 341 97-25490
E-Mail: director@trm.uni-leipzig.de
Web: www.trm.uni-leipzig.de
Dr. Jana Burkhardt
Translationszentrum für Regenerative Medizin (TRM) Leipzig
Telefon: +49 341 97-39680
E-Mail: jana.burkhardt@trm.uni-leipzig.de
Web: www.trm.uni-leipzig.de
Weitere Informationen:
http://www.zv.uni-leipzig.de/service/presse/pressemeldungen.html?ifab_modus=detail&ifab_uid=2ed082862120130918104638&ifab_id=5098

Diana Smikalla | Universität Leipzig
Weitere Informationen:
http://www.uni-leipzig.de
http://www.trm.uni-leipzig.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Lymphdrüsenkrebs programmiert Immunzellen zur Förderung des eigenen Wachstums um
22.02.2018 | Wilhelm Sander-Stiftung

nachricht Forscher entdecken neuen Signalweg zur Herzmuskelverdickung
22.02.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics