Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie das Ohr zwischen Lärm und Flüstern unterscheidet

19.02.2009
Wissenschaftler aus Göttingen haben herausgefunden, welche zellulären Mechanismen der Verarbeitung unterschiedlicher Schallstärken zu Grunde liegen

Das menschliche Gehör ist in der Lage, ein immenses Lautstärkespektrum wahrzunehmen.

Der Lärm eines startenden Jumbojets beispielsweise drückt eine Million Mal stärker auf unser Trommelfell, als das Summen einer Mücke. Dennoch können wir alle Lautstärken, die dazwischen liegen, nicht nur hören, sondern auch auseinanderhalten.

Wie bringt es das Ohr fertig, eine so weite Palette von Lautstärken abzudecken? Göttinger Wissenschaftler am Bernstein Zentrum für Computational Neuroscience haben sich unter der Leitung von Prof. Dr. Tobias Moser (Innenohr-Labor an der Universitätsmedizin Göttingen) den Mechanismus dahinter genauer angesehen.

Das Geheimnis liegt offenbar darin, wie die kleinen Haarzellen im Innenohr Signale an die nachgeschalteten Nervenfasern weitergeben. Die Ergebnisse der Arbeit werden in der Fachzeitschrift "Proceedings of the National Academy of Sciences" veröffentlicht.

Das passiert im Ohr, wenn wir hören: Eine Schallwelle bringt zunächst das Trommelfell zum Schwingen - diese Bewegung wird als Druckwelle im Ohr weitergeleitet und setzt letztlich im Innenohr winzige Härchen auf so genannten Haarzellen in Bewegung. Die Haarzellen wandeln die Schwingungen der Härchen in Nervenimpulse um. Jede Haarzelle steht mit bis zu zwanzig nachgeschalteten Nervenfasern in Kontakt.

Je nach Lautstärke aktiviert die Haarzelle eine unterschiedliche Anzahl dieser nachgeschalteten Nervenfasern. Die Übertragungseffizienz an den Kontaktstellen zwischen Haarzelle und Nervenfaser ist je nach Kontaktstelle unterschiedlich: Manche nachgeschalteten Zellen reagieren schon bei leisen Tönen, andere erst bei lauten.

Wie die Haarzellen dabei vorgehen, haben Professor Moser und seine Kollegen im Innenohr der Maus untersucht. Dabei konnten sie einen für Nervenzellen recht ungewöhnlichen Mechanismus aufdecken: Durch das Auslenken der Härchen einer Haarzelle verändert sich die elektrische Spannung über ihrer Zellmembran - und zwar umso mehr, je lauter das Signal ist.

Diese Spannungsänderung öffnet spannungsgeregelte Kalziumkanäle, die sich an den Kontaktstellen zu den nachgeschalteten Nervenfasern befinden. Kalzium kann durch diese Kanäle ins Zellinnere strömen und verursacht die Signalübertragung von den Haarzellen auf nachgeschaltete Zellen. Die Arbeitsgruppe konnte zeigen: an den Kontaktstellen einer Haarzelle fließt verschieden viel Kalzium ein, obwohl alle Kalziumkanäle durch die gleiche Spannung gesteuert werden.

"Diese Unterschiede zwischen den verschiedenen Kontaktstellen einer Haarzelle könnte erklären, warum an einigen Kontaktstellen bereits schwache Signale weitergeleitet werden, während andere Kontaktstellen erst bei stärkeren Signalen aktiv werden", sagt Prof. Dr. Tobias Moser.

Woher aber kommen diese Unterschiede in der einströmenden Kalziummenge? Mit ihren Experimenten konnten die Wissenschaftler zeigen, dass es zwei Gründe dafür gibt. Die Zahl der Kalziumkanäle ist von Kontaktstelle zu Kontaktstelle unterschiedlich. Außerdem reagieren die Kalziumkanäle in verschiedenen Kontaktstellen auch bei unterschiedlichen Membranspannungen.

"Die Haarzelle stattet also ihre Kontaktstellen verschieden mit Kalziumkanälen aus, um nachgeschaltete Nervenfasern unterschiedlich stark zu aktivieren und so das gesamte Lautstärkespektrum abzudecken", erklären die Wissenschaftler das Ergebnis. Nun wollen die Wissenschaftler des Bernstein Zentrums die Mechanismen weiter untersuchen, die zu den Unterschieden in der Anzahl und dem Schaltverhalten der Kanäle führen.

Originalveröffentlichung:
Thomas Frank, Darina Khimich, Andreas Neef & Tobias Moser. Mechanisms contributing to synaptic Ca2+ signals and their heterogeneity in hair cells. PNAS, online veröffentlicht , 16-20.02.2009
WEITERE INFORMATIONEN:
Universitätsmedizin Göttingen
Prof. Dr. Tobias Moser
Abteilung Hals-Nasen-Ohrenheilkunde
InnerEarLab
37075 Göttingen
Telefon +49 (0)551 3922837
Email: tmoser@gwdg.de

Dr. Katrin Weigmann | idw
Weitere Informationen:
http://www.nncn.de
http://www.bccn-goettingen.de
http://www.innerearlab.uni-goettingen.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Tollwutviren zeigen Verschaltungen im gläsernen Gehirn
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Sicher und gesund arbeiten mit Datenbrillen
13.01.2017 | Bundesanstalt für Arbeitsschutz und Arbeitsmedizin

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

21.500 Euro für eine grüne Zukunft – Unserer Umwelt zuliebe

20.01.2017 | Unternehmensmeldung

innovations-report im Interview mit Rolf-Dieter Lafrenz, Gründer und Geschäftsführer der Hamburger Start ups Cargonexx

20.01.2017 | Unternehmensmeldung

Niederlande: Intelligente Lösungen für Bahn und Stahlindustrie werden gefördert

20.01.2017 | Förderungen Preise