Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie das Ohr zwischen Lärm und Flüstern unterscheidet

19.02.2009
Wissenschaftler aus Göttingen haben herausgefunden, welche zellulären Mechanismen der Verarbeitung unterschiedlicher Schallstärken zu Grunde liegen

Das menschliche Gehör ist in der Lage, ein immenses Lautstärkespektrum wahrzunehmen.

Der Lärm eines startenden Jumbojets beispielsweise drückt eine Million Mal stärker auf unser Trommelfell, als das Summen einer Mücke. Dennoch können wir alle Lautstärken, die dazwischen liegen, nicht nur hören, sondern auch auseinanderhalten.

Wie bringt es das Ohr fertig, eine so weite Palette von Lautstärken abzudecken? Göttinger Wissenschaftler am Bernstein Zentrum für Computational Neuroscience haben sich unter der Leitung von Prof. Dr. Tobias Moser (Innenohr-Labor an der Universitätsmedizin Göttingen) den Mechanismus dahinter genauer angesehen.

Das Geheimnis liegt offenbar darin, wie die kleinen Haarzellen im Innenohr Signale an die nachgeschalteten Nervenfasern weitergeben. Die Ergebnisse der Arbeit werden in der Fachzeitschrift "Proceedings of the National Academy of Sciences" veröffentlicht.

Das passiert im Ohr, wenn wir hören: Eine Schallwelle bringt zunächst das Trommelfell zum Schwingen - diese Bewegung wird als Druckwelle im Ohr weitergeleitet und setzt letztlich im Innenohr winzige Härchen auf so genannten Haarzellen in Bewegung. Die Haarzellen wandeln die Schwingungen der Härchen in Nervenimpulse um. Jede Haarzelle steht mit bis zu zwanzig nachgeschalteten Nervenfasern in Kontakt.

Je nach Lautstärke aktiviert die Haarzelle eine unterschiedliche Anzahl dieser nachgeschalteten Nervenfasern. Die Übertragungseffizienz an den Kontaktstellen zwischen Haarzelle und Nervenfaser ist je nach Kontaktstelle unterschiedlich: Manche nachgeschalteten Zellen reagieren schon bei leisen Tönen, andere erst bei lauten.

Wie die Haarzellen dabei vorgehen, haben Professor Moser und seine Kollegen im Innenohr der Maus untersucht. Dabei konnten sie einen für Nervenzellen recht ungewöhnlichen Mechanismus aufdecken: Durch das Auslenken der Härchen einer Haarzelle verändert sich die elektrische Spannung über ihrer Zellmembran - und zwar umso mehr, je lauter das Signal ist.

Diese Spannungsänderung öffnet spannungsgeregelte Kalziumkanäle, die sich an den Kontaktstellen zu den nachgeschalteten Nervenfasern befinden. Kalzium kann durch diese Kanäle ins Zellinnere strömen und verursacht die Signalübertragung von den Haarzellen auf nachgeschaltete Zellen. Die Arbeitsgruppe konnte zeigen: an den Kontaktstellen einer Haarzelle fließt verschieden viel Kalzium ein, obwohl alle Kalziumkanäle durch die gleiche Spannung gesteuert werden.

"Diese Unterschiede zwischen den verschiedenen Kontaktstellen einer Haarzelle könnte erklären, warum an einigen Kontaktstellen bereits schwache Signale weitergeleitet werden, während andere Kontaktstellen erst bei stärkeren Signalen aktiv werden", sagt Prof. Dr. Tobias Moser.

Woher aber kommen diese Unterschiede in der einströmenden Kalziummenge? Mit ihren Experimenten konnten die Wissenschaftler zeigen, dass es zwei Gründe dafür gibt. Die Zahl der Kalziumkanäle ist von Kontaktstelle zu Kontaktstelle unterschiedlich. Außerdem reagieren die Kalziumkanäle in verschiedenen Kontaktstellen auch bei unterschiedlichen Membranspannungen.

"Die Haarzelle stattet also ihre Kontaktstellen verschieden mit Kalziumkanälen aus, um nachgeschaltete Nervenfasern unterschiedlich stark zu aktivieren und so das gesamte Lautstärkespektrum abzudecken", erklären die Wissenschaftler das Ergebnis. Nun wollen die Wissenschaftler des Bernstein Zentrums die Mechanismen weiter untersuchen, die zu den Unterschieden in der Anzahl und dem Schaltverhalten der Kanäle führen.

Originalveröffentlichung:
Thomas Frank, Darina Khimich, Andreas Neef & Tobias Moser. Mechanisms contributing to synaptic Ca2+ signals and their heterogeneity in hair cells. PNAS, online veröffentlicht , 16-20.02.2009
WEITERE INFORMATIONEN:
Universitätsmedizin Göttingen
Prof. Dr. Tobias Moser
Abteilung Hals-Nasen-Ohrenheilkunde
InnerEarLab
37075 Göttingen
Telefon +49 (0)551 3922837
Email: tmoser@gwdg.de

Dr. Katrin Weigmann | idw
Weitere Informationen:
http://www.nncn.de
http://www.bccn-goettingen.de
http://www.innerearlab.uni-goettingen.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Abstoßung von Spenderorganen: Neue Biomarker sollen Komplikationen verhindern
15.12.2017 | Deutsche Herzstiftung e.V./Deutsche Stiftung für Herzforschung

nachricht Antibiotikaresistenzen durch Nanopartikel überwinden?
15.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik