Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues multipotentes Darmhormon wirkt bei Diabetes

31.10.2013
Eine neuartige Hormonkombination in einem einzigen Molekül, das gleichermaßen an den Rezeptoren der Insulin-stimulierenden Hormone GLP-1 und GIP wirkt, führt zu einer effektiven Gewichtsreduktion und zu verbesserten Blutzuckerwerten.

Damit haben Wissenschaftler des Helmholtz Zentrums München (HMGU) und der Technischen Universität München (TUM) gemeinsam mit der Indiana University einen neuen therapeutischen Ansatz für Typ-2-Diabetes entwickelt.

Die Ergebnisse wurden in der Fachzeitschrift ‚Science Translational Medicine‘ veröffentlicht, darin sind bereits Daten von erfolgreichen klinischen Studien in Partnerschaft mit dem Pharmaunternehmen Roche enthalten.

GLP-1 (Glucagon like Peptide 1) und GIP (Gastric Inhibitory Peptide) sind Hormone, die vom Verdauungstrakt gebildet werden und die Nahrungsverwertung sowie verschiedene Stoffwechselprozesse steuern. Sie führen bei Aufnahme von Glucose (Zucker) zu einer vermehrten Insulin-Ausschüttung und senken dadurch den Blutzuckerspiegel, haben aber auch Effekte auf die Appetitregulation und die Fettverbrennung.

Ein Teil dieser Einzel-Effekte, die hier zum ersten Mal kombiniert sind, werden bereits für die Behandlung des Typ-2-Diabetes genutzt. GLP-1-Analoga sowie die verwandt wirkenden DPP4 (Dipeptidyl-Peptidase 4)-Hemmer, welche die GLP-1 Wirkung verstärken sollen, werden zur Blutzuckersenkung angewandt. Den Wissenschaftlern um Dr. Brian Finan und Prof. Dr. Matthias Tschöp vom Helmholtz Diabetes Center am HMGU sowie vom Lehrstuhl für Stoffwechselerkrankungen der TUM ist es nun gemeinsam mit Richard DiMarchi von der Indiana University und Kollegen der University of Cincinnati gelungen, eine Molekülstruktur zu entwickeln, die die Wirkungen beider Hormone in sich vereint. Das heißt, diese neuen Moleküle stimulieren beide Rezeptoren von GLP-1 und GIP zugleich und erzielen dadurch maximierte Stoffwechselverbesserungen im Vergleich mit jedem der Einzelmoleküle oder bisher verfügbaren Medikamenten, die auf einzelnen Darmhormonen basieren.

Dieser sogenannte GLP-1/GIP-Co-Agonist führte zu optimierten Blutzuckerwerten sowie zu einer deutlichen Gewichtsreduktion und niedrigeren Blutfetten. Die Wirksamkeit für Blutzuckerverbesserungen konnte bereits auch am Menschen nachgewiesen werden. Gleichzeitig gibt es Anzeichen an Tiermodellen, dass eventuelle Nebenwirkungen, unter diesen sind am häufigsten unerwünschte Magen-Darm-Effekte, mit diesem neuen Ansatz seltener auftreten und geringer ausgeprägt sind, als bei den einzeln wirksamen Substanzen.

„Diese neuen Ergebnisse machen uns zuversichtlich, dass unser Ansatz - die Stoffwechselkontrolle im Gehirn über natürliche Darmhormone zu beeinflussen - tatsächlich zu einem Durchbruch für die Diabetesprävention und -therapie führen kann.“ erklärt Prof. Tschöp. „Allerdings müssen diese Moleküle in den nächsten Jahren weiterhin wissenschaftlich und klinisch geprüft werden, bevor sie eventuell als Therapieverfahren zugelassen werden können.“ Dr. Finan, Erstautor der Studie, ist optimistisch: „Dieser neue multifunktionale Wirkstoffansatz könnte dann als personalisiertes Therapiekonzept für Typ-2-Diabetes dienen, da sich das Verhältnis der Signalstärke von GLP-1 und GIP - je nach individuellem Bedürfnis der Patientengruppierung – im Prinzip adjustieren lässt.“ Die jetzt publizierten Studien repräsentieren den zentralen Forschungsfokus am Helmholtz Zentrum München, Partner im Deutschen Zentrum für Diabetesforschung (DZD): Ziel ist es, neue Ansätze für Diagnose, Therapie und Prävention der großen Volkskrankheiten zu etablieren und diese im Sinne der translationalen Forschung schnellstmöglich weiterzuentwickeln, um konkreten Nutzen für die Gesellschaft zu erbringen.

Weitere Informationen

Original-Publikation:
Finan, B. et al. (2013). Novel Unimolecular Dual-Incretins Maximize Metabolic Benefits in Rodents, Monkeys, and Humans, Science Translational Medicine, doi: 10.1126/scitranslmed.3007218

Das Helmholtz Zentrum München verfolgt als deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Genetik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.000 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 18 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 34.000 Beschäftigten angehören. Das Helmholtz Zentrum München ist Partner im Deutschen Zentrum für Diabetesforschung e.V. www.helmholtz-muenchen.de

Das Deutsche Zentrum für Diabetesforschung e.V. bündelt Experten auf dem Gebiet der Diabetesforschung und verzahnt Grundlagenforschung, Epidemiologie und klinische Anwendung. Mitglieder des Verbunds sind das Deutsche Diabetes-Zentrum DDZ in Düsseldorf, das Deutsche Institut für Ernährungsforschung DIfE in Potsdam-Rehbrücke, das Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt, die Paul Langerhans Institute des Carl Gustav Carus Universitätsklinikums Dresden und der Eberhard-Karls-Universität Tübingen sowie die Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz e.V. und die Helmholtz-Gemeinschaft Deutscher Forschungszentren. Ziel des DZD ist es, über einen neuartigen, integrativen Forschungsansatz Antworten auf offene Fragen in der Diabetesforschung zu finden und einen wesentlichen Beitrag zur Verbesserung von Prävention, Diagnose und Therapie des Diabetes mellitus zu leisten.

Das Institut für Diabetes und Adipositas (IDO) erforscht die Erkrankungen des Metabolischen Syndroms mit systembiologischen und translationalen Ansätzen auf der Basis von zellulären Systemen, genetisch modifizierten Mausmodellen und klinischen Interventionsstudien. Ziel ist die Entdeckung neuer Signalwege, um interdisziplinär innovative Therapieansätze zur personalisierten Prävention und Behandlung von Adipositas, Diabetes und deren Begleiterkrankungen zu entwickeln. IDO ist Teil des Helmholtz Diabetes Center (HDC).

Susanne Eichacker | Helmholtz-Zentrum
Weitere Informationen:
http://www.helmholtz-muenchen.de/news/aktuelles-2013/pressemitteilungnews/article/22675/index.html

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neurorehabilitation nach Schlaganfall: Innovative Therapieansätze nutzen Plastizität des Gehirns
25.09.2017 | Deutsche Gesellschaft für Neurologie e.V.

nachricht Die Parkinson-Krankheit verstehen – und stoppen: aktuelle Fortschritte
25.09.2017 | Deutsche Gesellschaft für Neurologie e.V.

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment

25.09.2017 | Biowissenschaften Chemie

Internationales Forscherteam entdeckt kohärenten Lichtverstärkungsprozess in Laser-angeregtem Glas

25.09.2017 | Physik Astronomie

LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

25.09.2017 | Messenachrichten