Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laser soll bei Chemotherapie helfen

10.10.2012
TU Berlin und Charité bestärken ihre Partnerschaft /
Neues Forschungsprojekt „HautScan“

Gemeinsame Pressemitteilung der Charité und TU Berlin

Zur Präsentation des neuen gemeinsamen Projekts „HautScan“ am 10. Oktober 2012 betonten Prof. Dr.-Ing. Jörg Steinbach, Präsident der TU Berlin, und Prof. Dr. Karl M. Einhäupl, Vorstandsvorsitzender der Charité, dass diese Forschung auf Spitzenniveau ein herausragendes Beispiel für die Zusammenarbeit beider Wissenschaftseinrichtungen sei. Die TU Berlin und Charité – Universitätsmedizin Berlin untermauern ihre strategische Partnerschaft, die im Mai 2010 mit einer Vereinbarung schriftlich festgehalten wurde.

Normalerweise trennen Mediziner und Physiker Welten. Die einen haben mit Körpern zu tun, die anderen mit Festkörpern. Bei den einen kann eine Fehlerquote von weniger als 50 Prozent ein Erfolg bedeuten, bei den anderen ist sie eine Katastrophe. Nun haben beide eine gemeinsame Vision: Im Rahmen des Forschungsvorhabens „HautScan“ wollen Wissenschaftlerinnen und Wissenschaftler der Charité und der TU Berlin in Zusammenarbeit mit dem Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, ihre Welten verzahnen und medizinische Forschung mit neuen Methoden der Optoelektronik verknüpfen. Gefördert wird das Projekt von der Einstein Stiftung Berlin.

Aufhänger ist das Hand- und Fußsyndrom, ein Problem, das bei Krebspatienten häufig auftritt: Das Chemotherapeutikum Doxorubicin hat die Eigenschaft, erst durch die Haut auszutreten und dann wieder in sie einzudringen, wodurch es die Haut zerstört. Dies führt häufig zum Therapieabbruch. „Die Idee ist nun, mit optischen Verfahren zu kontrollieren, wann diese Substanzen, die dem Körper appliziert wurden, wieder herauskommen, um dann festzustellen, wie man dagegen therapieren kann“, sagt Priv.-Doz. Dr. Bernd Sumpf, Physiker am Ferdinand-Braun-Institut.

Eine derartige Methode hätte einen großen Vorteil: Sie ist nicht-invasiv, das heißt, durch sie erhielte man Informationen, ohne den Patienten durch Blutabnahme oder andere Eingriffe zusätzlich zu belasten. Doch das liegt noch weit in der Zukunft, erst müssen die Grundlagen erforscht werden.

In einem ersten Schritt wollen die Mediziner um Prof. Dr. Dr.-Ing. Jürgen Lademann an der Klinik für Dermatologie, Venerologie und Allergologie der Charité herausfinden, welche Substanzen genau zu messen sind. Sind sie bekannt, können die Physiker um Prof. Dr. Günther Tränkle, TU-Professor für Mikrowellen- und Optoelektronik und Direktor am Ferdinand-Braun-Institut, aktiv werden.

Sie haben das Wissen und die technischen Möglichkeiten, um hochpräzise Halbleiterlaser-Lichtquellen zu entwickeln, die für die sogenannte Raman-Spektroskopie nötig sind: So wie jeder Mensch einen eigenen Fingerabdruck besitzt, hat auch jede Substanz ein einzigartiges, charakteristisches Raman-Spektrum. Wenn man diese also mit einem Laser anregt, streut sie das Laserlicht entsprechend ihrer typischen Schwingungen und Rotationen zurück und wird so sichtbar (Raman-Effekt).

Die Spezialisten für optische Systeme stehen hier vor zwei Herausforderungen: Sie müssen einerseits eine Lichtquelle entwickeln, die im grün-blau-farbenen Bereich strahlt. „Für unsere Messungen brauchen wir Lichtquellen mit Eigenschaften, die in diesem Wellenlängenbereich heute noch kein kommerzieller Laser bietet. Die Farbe des Lasers erreichen wir mit Hilfe der sogenannten nicht-linearen Frequenzkonversion“, so Dr. Sumpf. Außerdem will man ein kompaktes Messsystem konstruieren, das die Ärzte leicht mit sich führen können. Waren bisherige Apparaturen etwa schrankgroß, haben die Wissenschaftler nun Winziges im Sinn: die Messsonde soll etwa die Größe eines Laserpointers haben, das Spektrometer und ein Netzteil in einem Aktenkoffer Platz finden.

Drei Jahre haben die Berliner Wissenschaftlerinnen und Wissenschaftler Zeit, sich dieser Forschung zu widmen. So lange läuft das Projekt, das im Rahmen des Programms „Einstein-Forschungsvorhaben“ von der Einstein Stiftung Berlin gefördert wird. „Medizin und Physik zusammenzubringen ist eine große Chance. Wenn hieraus neue Verfahren und Geräte entstehen, profitieren alle: Wissenschaftler, Patienten und nicht zuletzt der Gesundheitsstandort Berlin“, betont Prof. Dr. Tränkle.

Fotomaterial zum Download finden Sie unter:
www.tu-berlin.de/?id=125103
Weitere Informationen erteilen Ihnen gern:
Stefanie Terp, Pressesprecherin der TU Berlin, Tel.: 030/314-23922, E-Mail: pressestelle@tu-berlin.de,
Stefanie Winde, Leiterin der Unternehmenskommunikation der Charité – Universitätsmedizin Berlin, Tel.: 030/450 570 400, E-Mail:
presse@charite.de,
Petra Immerz, Ferdinand-Braun-Institut, Communications & Public Relations Manager, Tel.:030/6392-2626, E-Mail: petra.immerz@fbh-berlin.de

Stefanie Terp | idw
Weitere Informationen:
http://www.fbh-berlin.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Herzerkrankungen: Wenn weniger mehr ist
30.03.2017 | Universitätsspital Bern

nachricht Stoßlüften ist besser als gekippte Fenster
29.03.2017 | Technische Universität München

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE