Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Knochenarbeit - Wissenschaftler forschen an stabilen Implantaten, die der Körper wieder abbauen kann

02.08.2011
Menschliche Knochen sind Regenerationswunder. Nach einem Bruch wachsen sie ohne Narbenbildung wieder zusammen. Überschreitet der Knochendefekt allerdings eine kritische Größe, ist die moderne Medizin gefordert.

„In der Regel wird heute ein Implantat eingesetzt, das die Knochenenden verbindet und dadurch das knochenbildende System stimuliert“, weiß Professor Helmut Schubert vom Institut für Werkstoffwissenschaften und Technologien der TU Berlin. „Häufig wird dazu ein speziell gereinigter Rinderknochen benutzt.“

Doch jedes noch so gute Implantat hat einen entscheidenden Nachteil: Es verhält sich im Körper immer anders als der menschliche Knochen. „Die Steifheit des Materials ist anders und damit auch die Regeneration des beschädigten Knochens“, so Schubert. In vielen Fällen muss es nach der Heilung auch wieder entfernt werden. „Unser Ziel ist ein bioaktives Implantat, das dem körpereigenen Knochen möglichst ähnlich ist. Zusätzlich soll es im gleichen Tempo abgebaut werden, in dem neues, körpereigenes Knochengewebe entsteht.“

„Knochen bestehen im Wesentlichen aus Kollagen, einem Eiweiß, Hydroxylapatit, einem Mineral, und Wasser. Zusammen formen diese Substanzen die mineralisierten Kollagenfibrillen und das Mineral um die Kollagenfibrillen, aus denen Knochen hauptsächlich aufgebaut sind“, so Rosali Möllmann, wissenschaftliche Mitarbeiterin von Helmut Schubert. Kommt es zu einem Bruch, wird eine so genannte Entzündungskaskade ausgelöst. Bei einer Fraktur zerreißen immer auch Gefäße, so dass eine Blutung entsteht. Dieses Frakturhämatom und die Gewebetrümmer lösen eine Entzündungsreaktion aus, die die erste Phase der Heilung einleitet. Spezifische Botenstoffe locken weitere Zellen, darunter auch Stammzellen, in diesen Bereich. Bereits acht Stunden nach der Fraktur ist die Zellteilungsrate im Knochen deutlich erhöht. Sind die Bruchenden zu weit voneinander entfernt oder gegeneinander beweglich, unterbleibt die Stimulierung des knochenbildenden Systems. In diesen Fällen setzen die Mediziner in die Lücke zwischen den Bruchenden ein Implantat ein, das dann die Entzündungskaskade stimuliert: Osteoblasten, Zellen aus der inneren Knochenhaut, die für die Neubildung von Knochen zuständig sind, besiedeln den Knochenersatz.

„Wir arbeiten an einem Material, das in seiner Festigkeit und Chemie der Knochentextur ähnelt und ein Porennetzwerk hat, damit Zellen und Blutgefäße in das Implantat einwandern können. Die jeweilige Porengröße muss dafür eine kritische Größe von 0,2 Millimetern überschreiten. Die verwendeten Materialien dürfen nicht toxisch und das Material muss vom Körper abbaubar sein“, nennt Rosali Möllmann nur einige der wichtigsten Anforderungen an den neuen Werkstoff.

Die Arbeitsgruppe experimentiert dazu mit einer Emulsion aus Substanzen, die auch im menschlichen Knochen vorkommen: Wasser, Öl, Hydroxylapatit und Gelatine, als vorläufiger Ersatz für Kollagen. Diese Substanzen werden zu einer flüssigen Mischung verrührt, einer Emulsion. Öltropfen sind gleichmäßig fein in der wässrigen Lösung verteilt. Emulgatoren, Substanzen die zwei nicht miteinander mischbare Flüssigkeiten in einer stabilen Mischung halten, unterstützen diese Öl-in-Wasser-Emulsion. „Der eingesetzte Emulgator und die Rührgeschwindigkeit haben unmittelbaren Einfluss auf die Öl-Tropfengröße und -verteilung. Die Größe der einzelnen Öltropfen bestimmt wiederum die spätere Porengröße des Implantats“, so Almuth Berthold, wissenschaftliche Mitarbeiterin. Die Emulsion kann in beliebige Formen gegossen werden. Nach dem Erkalten wird sie gefriergetrocknet, respektive entwässert, sowie der Ölanteil entfernt. Übrig bleibt ein poröser Feststoff aus Hydroxylapatit und Protein, der von einem Porensystem durchzogen ist.

„Das Besondere an diesem Implantat ist die flexible Herstellung: Durch Veränderungen des Ölanteils oder der Rührintensität können wir Anzahl und Größe der Poren regulieren. Die Festigkeit lässt sich über die Menge an Hydroxylapatit bestimmen“, so Berthold. Im Idealfall ließe sich so ein vollständig individualisierbares Implantat herstellen. Katharina Jung

Weitere Informationen erteilt Ihnen gern: Prof. Dr. Helmut Schubert, Fachgebiet Keramische Werkstoffe am Institut für Werkstoffwissenschaften und -technologien der TU Berlin, Englische Straße 20, 10587 Berlin, Tel.: 030/314-23425, E-Mail: helmut.schubert@tu-berlin.de; Rosali Möllmann, Wissenschaftliche Mitarbeiterin, Fachgebiet Keramische Werkstoffe am Institut für Werkstoffwissenschaften und -technologien der TU Berlin Tel.: 030/314-24463

Die Medieninformation zum Download:
www.pressestelle.tu-berlin.de/medieninformationen/
„EIN-Blick für Journalisten“ – Serviceangebot der TU Berlin für Medienvertreter:
Forschungsgeschichten, Expertendienst, Ideenpool, Fotogalerien unter:
http://www.pressestelle.tu-berlin.de/?id=4608

Stefanie Terp | idw
Weitere Informationen:
http://www.tu-berlin.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein
02.12.2016 | Ernst-Moritz-Arndt-Universität Greifswald

nachricht Epstein-Barr-Virus: von harmlos bis folgenschwer
30.11.2016 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie