Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Knochenarbeit - Wissenschaftler forschen an stabilen Implantaten, die der Körper wieder abbauen kann

02.08.2011
Menschliche Knochen sind Regenerationswunder. Nach einem Bruch wachsen sie ohne Narbenbildung wieder zusammen. Überschreitet der Knochendefekt allerdings eine kritische Größe, ist die moderne Medizin gefordert.

„In der Regel wird heute ein Implantat eingesetzt, das die Knochenenden verbindet und dadurch das knochenbildende System stimuliert“, weiß Professor Helmut Schubert vom Institut für Werkstoffwissenschaften und Technologien der TU Berlin. „Häufig wird dazu ein speziell gereinigter Rinderknochen benutzt.“

Doch jedes noch so gute Implantat hat einen entscheidenden Nachteil: Es verhält sich im Körper immer anders als der menschliche Knochen. „Die Steifheit des Materials ist anders und damit auch die Regeneration des beschädigten Knochens“, so Schubert. In vielen Fällen muss es nach der Heilung auch wieder entfernt werden. „Unser Ziel ist ein bioaktives Implantat, das dem körpereigenen Knochen möglichst ähnlich ist. Zusätzlich soll es im gleichen Tempo abgebaut werden, in dem neues, körpereigenes Knochengewebe entsteht.“

„Knochen bestehen im Wesentlichen aus Kollagen, einem Eiweiß, Hydroxylapatit, einem Mineral, und Wasser. Zusammen formen diese Substanzen die mineralisierten Kollagenfibrillen und das Mineral um die Kollagenfibrillen, aus denen Knochen hauptsächlich aufgebaut sind“, so Rosali Möllmann, wissenschaftliche Mitarbeiterin von Helmut Schubert. Kommt es zu einem Bruch, wird eine so genannte Entzündungskaskade ausgelöst. Bei einer Fraktur zerreißen immer auch Gefäße, so dass eine Blutung entsteht. Dieses Frakturhämatom und die Gewebetrümmer lösen eine Entzündungsreaktion aus, die die erste Phase der Heilung einleitet. Spezifische Botenstoffe locken weitere Zellen, darunter auch Stammzellen, in diesen Bereich. Bereits acht Stunden nach der Fraktur ist die Zellteilungsrate im Knochen deutlich erhöht. Sind die Bruchenden zu weit voneinander entfernt oder gegeneinander beweglich, unterbleibt die Stimulierung des knochenbildenden Systems. In diesen Fällen setzen die Mediziner in die Lücke zwischen den Bruchenden ein Implantat ein, das dann die Entzündungskaskade stimuliert: Osteoblasten, Zellen aus der inneren Knochenhaut, die für die Neubildung von Knochen zuständig sind, besiedeln den Knochenersatz.

„Wir arbeiten an einem Material, das in seiner Festigkeit und Chemie der Knochentextur ähnelt und ein Porennetzwerk hat, damit Zellen und Blutgefäße in das Implantat einwandern können. Die jeweilige Porengröße muss dafür eine kritische Größe von 0,2 Millimetern überschreiten. Die verwendeten Materialien dürfen nicht toxisch und das Material muss vom Körper abbaubar sein“, nennt Rosali Möllmann nur einige der wichtigsten Anforderungen an den neuen Werkstoff.

Die Arbeitsgruppe experimentiert dazu mit einer Emulsion aus Substanzen, die auch im menschlichen Knochen vorkommen: Wasser, Öl, Hydroxylapatit und Gelatine, als vorläufiger Ersatz für Kollagen. Diese Substanzen werden zu einer flüssigen Mischung verrührt, einer Emulsion. Öltropfen sind gleichmäßig fein in der wässrigen Lösung verteilt. Emulgatoren, Substanzen die zwei nicht miteinander mischbare Flüssigkeiten in einer stabilen Mischung halten, unterstützen diese Öl-in-Wasser-Emulsion. „Der eingesetzte Emulgator und die Rührgeschwindigkeit haben unmittelbaren Einfluss auf die Öl-Tropfengröße und -verteilung. Die Größe der einzelnen Öltropfen bestimmt wiederum die spätere Porengröße des Implantats“, so Almuth Berthold, wissenschaftliche Mitarbeiterin. Die Emulsion kann in beliebige Formen gegossen werden. Nach dem Erkalten wird sie gefriergetrocknet, respektive entwässert, sowie der Ölanteil entfernt. Übrig bleibt ein poröser Feststoff aus Hydroxylapatit und Protein, der von einem Porensystem durchzogen ist.

„Das Besondere an diesem Implantat ist die flexible Herstellung: Durch Veränderungen des Ölanteils oder der Rührintensität können wir Anzahl und Größe der Poren regulieren. Die Festigkeit lässt sich über die Menge an Hydroxylapatit bestimmen“, so Berthold. Im Idealfall ließe sich so ein vollständig individualisierbares Implantat herstellen. Katharina Jung

Weitere Informationen erteilt Ihnen gern: Prof. Dr. Helmut Schubert, Fachgebiet Keramische Werkstoffe am Institut für Werkstoffwissenschaften und -technologien der TU Berlin, Englische Straße 20, 10587 Berlin, Tel.: 030/314-23425, E-Mail: helmut.schubert@tu-berlin.de; Rosali Möllmann, Wissenschaftliche Mitarbeiterin, Fachgebiet Keramische Werkstoffe am Institut für Werkstoffwissenschaften und -technologien der TU Berlin Tel.: 030/314-24463

Die Medieninformation zum Download:
www.pressestelle.tu-berlin.de/medieninformationen/
„EIN-Blick für Journalisten“ – Serviceangebot der TU Berlin für Medienvertreter:
Forschungsgeschichten, Expertendienst, Ideenpool, Fotogalerien unter:
http://www.pressestelle.tu-berlin.de/?id=4608

Stefanie Terp | idw
Weitere Informationen:
http://www.tu-berlin.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz: Nierenschädigungen therapieren, bevor Symptome auftreten
20.09.2017 | Universitätsklinikum Regensburg (UKR)

nachricht Neuer Ansatz zur Therapie der diabetischen Nephropathie
19.09.2017 | Universitätsklinikum Magdeburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie