Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Heidelberger Wissenschaftler entdeckten zwei biologisch unterschiedliche Arten von Ependymomen

10.09.2013
Ependymome gehören zu den häufigsten Formen bösartiger Hirntumoren im Kindesalter. Die Therapieerfolge bei Ependymomen variieren stark, nur knapp zwei Drittel aller Patienten mit einem Ependymom überleben ihre Erkrankung.

Ziel der Studie war es, molekulare Marker zu identifizieren, welche in der Lage sind, Ependymome mit einem vermeintlich komplizierten Verlauf, von denen mit relativ guten Heilungschancen zu unterscheiden.

Zudem wurden Signalwege innerhalb der Tumorzellen entschlüsselt, welche Möglichkeiten für neuartige Therapien darstellten können, um zukünftig die Heilungschancen von Patienten mit einem Ependymom zu verbessern.

Unter der Leitung von Dr. Hendrik Witt und Prof. Dr. Stefan Pfister vom Universitätsklinikum Heidelberg und Deutschen Krebsforschungszentrum konnte, in enger Kooperation mit der Gruppe von Prof. Dr. Michael Taylor am Hospital for Sick Children in Toronto, eine der bislang größten molekularbiologischen Analysen von Ependymomen durchgeführt werden. Basierend auf molekularen Besonderheiten konnten zwei unterschiedliche Arten von Ependymomen identifiziert werden, die sich sowohl in ihrem Erbgut als auch im klinischen Verlauf eklatant unterscheiden.

In dem von der Wilhelm Sander-Stiftung geförderten Projekt analysierten die Forscher 584 Feingewebsproben von Ependymomen basierend auf unterschiedlichen Aktivitäten von Botenstoff-Molekülen (mRNA), Veränderungen von Chromosomen und Proteinausprägungen in Feingewebsschnitten.

Die internationale Studie erbrachte eindeutige Ergebnisse: Kleinhirn-Ependymome lassen sich anhand ihrer Erbgut-Anomalien in zwei Typen unterteilen, die sich auch in ihrem klinischen Verlauf deutlich unterscheiden. Erkrankungen der Gruppe A zeigten einen extrem ungünstigen Verlauf, die Tumoren kehrten nach einer anfänglichen Operation oft zurück und metastasierten häufig, woran zahlreiche Patienten schließlich verstarben.

Zudem weisen Gruppe A Tumoren verhältnismäßig wenig Verluste oder Zugewinne von Genabschnitten auf, allerdings sind sehr viele Gene aktiviert, die in wichtigen Krebssignalwegen eine Rolle spielen. Gruppe B Tumoren hingegen haben eine günstigere Prognose, obwohl das Genom dieser Krebszellen sehr instabil ist. Diese Patienten haben mit standardisierter neurochirurgischer und anschließender Strahlentherapie gute Heilungschancen.

Im Rahmen der Forschungsstudie konnte eine weitere Facharbeit verfasst werden, in welcher die Etablierung von molekularen Prognosemarkern in die klinische Routine-Diagnostik untersucht wurde. Hier identifizierten Wissenschaftler um Dr. Till Milde einen molekularen Stammzellmarker, Nestin, welcher in der Lage war über die verschiedenen Lokalisationen hinweg bösartigere Ependymome sowie Gruppe A und Gruppe B Tumoren zu unterscheiden. Im Weiteren konnte der Marker in verschiedenen internationalen Ependymom-Sammlungen etabliert und validiert werden. Dieser Marker wird unterdessen routinemäßig von der Neuropathologie bei allen neu diagnostizierten Ependymomen untersucht, um eine Risikoabschätzung bereits bei Diagnosestellung zu erlauben.

Um nun ein Modell zu entwickeln neue Präzisionsmedikamente in Lebewesen (in vivo) zu testen, ist es Forschern um Dr. Milde gelungen mit Ependymom-Vorläuferzellen (Stammzellen) Ependymome in Mäusen zu entwickeln. Basierend auf den Vorarbeiten, konnten nun krebsrelevante Signalwege in Maus-Ependymomen mit neuen Präzisionsmedikamenten behandelt werden. Die Wirksamkeit von Histondeazetylase (HDAC)-Hemmstoffen zeigte einen durchschlagenden Effekt, zudem ein bessere Wirksamkeit im Vergleich zu Standard-Chemotherapie.

Mittlerweile sind klinische Studien begonnen worden, welchen HDAC-Inhibitoren im Falle von Erkrankungsrückfällen bei Patienten mit Ependymom inklusive Gruppe A Tumoren eingesetzt werden. Für andere Signalwege, die in Gruppe A Tumoren überaktiv sind, wurden bereits zielgerichtete Medikamente entwickelt, die derzeit in klinischen Studien bei anderen Krebsarten geprüft werden. Möglicherweise kommen einige dieser Wirkstoffe auch als Behandlungsoptionen beim Ependymom in Frage.

Die Wilhelm Sander-Stiftung förderte dieses Forschungsprojekt mit rund 100.000 Euro. Stiftungszweck ist die Förderung der medizinischen Forschung, insbesondere von Projekten im Rahmen der Krebsbekämpfung. Seit Gründung der Stiftung wurden insgesamt über 190 Mio. Euro für die Forschungsförderung in Deutschland und der Schweiz bewilligt. Die Stiftung geht aus dem Nachlass des gleichnamigen Unternehmers hervor, der 1973 verstorben ist.

Kontaktdaten der Projektleiter:

Prof. Dr. Stefan M. Pfister
Dr. Hendrik Witt
Deutsches Krebsforschungszentrum (DKFZ)
Abteilung für Pädiatrische Neuroonkologie
Im Neuenheimer Feld 580, 69120 Heidelberg
Email: s.pfister@dkfz.de, h.witt@dkfz.de
Dr. Till Milde
Deutsches Krebsforschungszentrum (DKFZ)
Klinische Kooperationseinheit (KKE) Pädiatrische Onkologie
Im Neuenheimer Feld 280, 69120 Heidelberg
Email: t.milde@dkfz.de

Bernhard Knappe | idw
Weitere Informationen:
http://www.wilhelm-sander-stiftung.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Lymphdrüsenkrebs programmiert Immunzellen zur Förderung des eigenen Wachstums um
22.02.2018 | Wilhelm Sander-Stiftung

nachricht Forscher entdecken neuen Signalweg zur Herzmuskelverdickung
22.02.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics