Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn die Gehirnhälften gegeneinander spielen

24.02.2012
Berner Neurowissenschaftler haben herausgefunden, wie die beiden Hirnhälften Reize durch Berührungen untereinander abstimmen – und auch gegenseitig unterdrücken.
Das kann für Schlaganfall-Patienten ein neuer Therapieansatz sein.
Reize durch Berührungen werden im Körper über Nervenbahnen zum Gehirn weitergeleitet – und kreuzen sich dabei: Werden wir an der rechten Hand berührt, löst dies eine Aktivität in der linken Gehirnhälfte aus.

Dennoch müssen die beiden Hirnhälften ihre Wahrnehmung abstimmen – und die Signale stets der anderen Hirnhälfte mitteilen. Sie tun dies über den sogenannten Balken, eine breite Nervenbahn, die beide Hirnhälften miteinander verbindet.

Dabei werden nicht nur aktivierende, sondern auch hemmende Signale vermittelt: Soll sich etwa nur die linke Hand bewegen, wird die Aktivität in der linken Hirnhälfte unterdrückt, damit sich nicht auch die rechte Hand mitbewegt. Durch eine gegenseitige Unterdrückung halten die Gehirnhälften ihre Aktivität im Gleichgewicht – ähnlich dem gleichzeitigen Drücken von Gas- und Bremspedal.

Wie dieser Unterdrückungs-Mechanismus auf zellulärer Ebene funktioniert, war bislang unbekannt. Eine Forschergruppe unter der Leitung von Prof. Matthew Larkum vom Institut für Physiologie der Universität Bern, des Inselspitals Bern und der Berliner Humboldt-Universität konnte ihn nun entschlüsseln. Die Erkenntnisse sind grundlegend für zahlreiche Interaktionen zwischen den Hirnhälften und könnten zum Beispiel bei der Behandlung von Schlaganfällen von Bedeutung sein. Die Studie wird heute im Journal «Science» publiziert.

Die Wahrnehmung besser verstehen

Mit verschiedenen Techniken untersuchten die Forschenden die Signalübermittlung von Nervenzellen im Gehirn einer Ratte, nachdem sie deren Hinterpfote stimuliert hatten. Wenn die rechte und linke Hinterpfote gleichzeitig stimuliert wurden, kam es zu einer Unterdrückung der Zellaktivität von bis zu einer halben Sekunde in beiden Hirnhälften. «Dieser Schaltmechanismus der Nervenzellen hilft uns, einige Rätsel in der Signalübermittlung im Gehirn zu lösen», sagt Larkum.

Für die Untersuchung nutzten die Forschenden einen neue Technologie, die sogenannte Optogenentik, die Optik und Genetik verbindet. Damit konnten sie genetisch veränderte Zellen mit Licht stimulieren und so den Signalweg zwischen den Hirnhälften präzise verfolgen. Die Ergebnisse lassen etwa das «Neglect-Syndrom» besser verstehen: Bei diesem Phänomen nehmen Patienten nach einem Schlaganfall nur noch die eine Hälfte ihres Körpers wahr. Dies hängt mit einer gestörten Signalübermittlung im Gehirn zusammen – eine Gehirnhälfte ist «hyperaktiv», weil sie von der anderen nicht mehr wie gewohnt unterdrückt wird.

Erfolg von Grundlagen- und klinischer Forschung

Eine Forschergruppe der Abteilung für kognitive und restorative Neurologie am Inselspital hat Neglect-Patienten untersucht und festgestellt, dass starke Magnetfelder in der Nähe des Kopfes die Symptome verringern. In einer Zusammenarbeit mit den Autoren dieser Studie konnten die Forschenden am Inselspital zeigen, dass eine magnetische Stimulation von Rattenhirnen denselben zellulären Unterdrückungs-Mechanismus auslöst wie bei der gleichzeitigen Stimulation beider Hinterpfoten.

«Diese Nervenschaltungen und damit das Zusammenspiel zwischen den Hirnhälften zu verstehen, ermöglicht unter anderem eine gezieltere und effektivere Behandlung von Schlaganfallpatienten», erklärt Larkum. Die Erkenntnisse aus der Studie sind laut den Forschenden weitreichend, da sie auf verschiedene kognitive Fähigkeiten und Krankheiten anwendbar sind, die mit der Kommunikation beider Hirnhälften zusammenhängen. «Unsere Studie zeigt auch wie wichtig es ist, Grundlagenforschung und klinische Forschung zu verbinden – eine Aufgabe, die die Universität Bern und das Inselspital zusammen sehr gut lösen.»

Bibliographische Angaben: Lucy M. Palmer, Jan M. Schulz, Sean C. Murphy, Debora Ledergerber, Masanori Murayama, Matthew E. Larkum: The Cellular Basis of GABAB-Mediated Interhemispheric Inhibition, Science in Press.

Nathalie Matter | Universität Bern
Weitere Informationen:
http://www.unibe.ch

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Vitamin-Mangel, der Kampf gegen die Antriebslosigkeit und Nahrung für die Nerven
08.12.2016 | PhytoDoc Ltd.

nachricht Entschlüsselung von Kommunikationswegen zwischen Tumor- und Immunzellen beim Eierstockkrebs
06.12.2016 | Wilhelm Sander-Stiftung

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie