Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher entdecken Epilepsie-Schalter

26.10.2015

Wissenschaftler der Universität Bonn und der Hebrew University Jerusalem (Israel) haben eine Signalkaskade entschlüsselt, die mit epileptischen Anfällen in Zusammenhang steht. Blockierten die Forscher in an Epilepsie erkrankten Mäusen einen zentralen Schalter, nahm die Häufigkeit und Schwere der Krämpfe ab. Mit einer neuartigen Technologie war es möglich, die Prozesse vor dem Auftreten epileptischer Anfälle an lebenden Tieren zu beobachten. Die Ergebnisse sind nun im Fachjournal „Nature Communications“ veröffentlicht.

Im Lauf seines Lebens erleidet etwa jeder 20. Mensch einen epileptischen Anfall. Dabei kommen die Nervenzellen aus ihrem gewohnten Takt und feuern in einem sehr schnellen Rhythmus. Krampfanfälle sind dann die Folge.


Fluoreszenz im Gehirn einer lebenden Maus: Die Stärke der Fluoreszenz wird durch Farben wiedergegeben, wobei die Intensität von rot zu violett abnimmt.

© Aufnahme: Karen von Loo/Labor Albert Becker

Solche synchrone Entladungen im Gehirn finden am häufigsten im Schläfenlappen statt. Oft entwickelt sich das Anfallsleiden zeitversetzt nach einer vorübergehenden Gehirnschädigung - zum Beispiel durch Verletzung oder Entzündung. An der Weiterleitung von Signalen im Gehirn sind sogenannte Ionenkanäle beteiligt, die wie ein Türsteher den Zutritt von Calcium-Ionen in die Nervenzellen regulieren.

„Außerdem ist seit Längerem bekannt, dass nach einer vorübergehenden schweren Gehirnschädigung und vor einem ersten spontanen epileptischen Anfall die Konzentration freier Zink-Ionen im Hippocampus steigt. Über die Bedeutung dieses Phänomens rätselte aber bislang die Wissenschaft“, sagt Prof. Dr. Albert J. Becker vom Institut für Neuropathologie der Universität Bonn. Der Hippocampus ist eine zentrale Schaltstation im Gehirn, die sich im Schläfenlappen befindet.

MTF1 wirkt wie ein Schalter im Gehirn

Das Team von Prof. Becker hat nun mit Wissenschaftlern der Experimentellen Epileptologie und der Neuroradiologie des Bonner Universitätsklinikums sowie der Hebrew University in Jerusalem (Israel) einen Signalweg entschlüsselt, der am Ausbruch des Anfallsleidens beteiligt ist.

Steigt nach einer vorübergehenden schweren Gehirnschädigung die Menge an Zink-Ionen, docken diese verstärkt an einem Schalter an, dem sogenannten metallregulatorischen Transkriptionsfaktor 1 (MTF1). Dies führt dazu, dass die Menge eines speziellen Calcium-Ionenkanals in den Nervenzellen stark zunimmt, was insgesamt die Gefahr epileptischer Anfälle massiv verstärkt.

Dass der Transkriptionsfaktor MTF1 in diesem Zusammenhang eine zentrale Rolle spielt, wiesen die Wissenschaftler mit einem Experiment an Mäusen nach, die an Epilepsie erkrankt waren. „Mit einem genetischen Verfahren hemmten wir in den epileptischen Mäusen MTF1, worauf es zu viel selteneren und schwächeren Anfällen in den Tieren kam“, sagt Erstautorin Dr. Karen M.J. van Loo, die im Team von Prof. Becker forscht.

Neue Technologie ermöglicht Beobachtungen am lebenden Gehirn

Bei ihren Untersuchungen nutzten die Wissenschaftler ein neuartiges Verfahren. Mit Hilfe von Viren schleusten die Forscher in die Gehirne von Mäusen fluoreszierende Moleküle ein, die immer dann leuchteten, wenn die Produktion des speziellen Calcium-Ionenkanals aktiviert wurde. Die von den Fluoreszenzmolekülen ausgesendeten Lichtstrahlen lassen sich durch die Schädeldecke der Mäuse messen. Dadurch ist es möglich, die während der Entwicklung einer Epilepsie stattfindenden Prozesse am lebenden Tier zu untersuchen.

„Leuchten die Fluoreszenzmoleküle, ist das ein Hinweis darauf, dass die Maus chronisch epileptische Anfälle entwickelt“, sagt die Molekularbiologin Prof. Dr. Susanne Schoch von der Neuropathologie der Uni Bonn. Die Forscher sehen in dieser neuen Technologie auch ein mögliches Potenzial für neue diagnostische Ansätze beim Menschen.

Hoffnung auf neue Diagnose- und Therapiemöglichkeiten

Die Wissenschaftler hoffen, dass sich durch ihre Entdeckung auch neue Behandlungsmöglichkeiten für Epilepsiepatienten eröffnen. „Rund ein Drittel der Patienten mit Schläfenlappenepilepsien spricht nicht auf Medikamente an. Wir forschen deshalb verstärkt an neuen und nebenwirkungsarmen Therapieoptionen“, sagt Prof. Becker. Würden die Zink-Ionen oder der Transkriptionsfaktor MTF1 gezielt im Gehirn gehemmt, ließe sich möglicherweise gar die Entstehung eines Anfallsleidens verhindern. „Das müssen aber erst noch weitere Studien erweisen“, sagt Dr. Karen M.J. van Loo.

Publikation: Zinc regulates a key transcriptional pathway for epileptogenesis via metal-regulatory transcription factor 1, Nature Communications, DOI: 10.1038/ncomms9688

Kontakt für die Medien:

Prof. Dr. Albert J. Becker
Institut für Neuropathologie
Tel. 0228/28711352
E-Mail: albert_becker@uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz: Nierenschädigungen therapieren, bevor Symptome auftreten
20.09.2017 | Universitätsklinikum Regensburg (UKR)

nachricht Neuer Ansatz zur Therapie der diabetischen Nephropathie
19.09.2017 | Universitätsklinikum Magdeburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik